
An Edge-AI Heterogeneous Solution for Real-time
Parking Occupancy Detection
Tran Ngoc Thinh1,2, Long Tan Le1,2, Nguyen Hoang Long1,2,

Ho Le Thuc Quyen1,2, Ngo Qui Thu1,2, Nguyen La Thong1,2, Huynh Phuc Nghi1,2

1Ho Chi Minh City University of Technology (HCMUT)
2Vietnam National University - Ho Chi Minh City (VNU-HCM)

Ho Chi Minh City, Vietnam
{tnthinh,1870385,long.nguyen29798,quyen.holethuc,1652595,thong.nguyenla, nghihp}@hcmut.edu.vn

Abstract—In the digital era, building smart cities is a highly
desired goal that every country strives to achieve. One of the
most difficult and exciting aspect of Smart City that has been
in constant development is Smart Parking. In this paper, we
are putting in our best effort into studying and implementing
a solution that we believe can help bring AI image recognition
capability to aid in Smart Parking as well as an accompanying
server and application set.

Index Terms—Smart Parking, Edge Computing, BNN

I. INTRODUCTION

Over the past decade, interest in developing Smart Cities
around the world has increased dramatically. Smart parking
system is one of the most critical components in Smart City
architecture, promising to improve quality of life significantly
by improving transportation and accessibility. One of the main
reasons for causing daily urban traffic congestion is drivers
trying to find a place to park their vehicles - accounting for
30% of congestion [1]. Moreover, searching for parking space
is a routine activity for many people in cities around the
world. This search burns through about one million barrels
of the world’s oil supply every day. As the global population
continues to urbanize, without a well-planned, convenient
solution to help managing parking slot, these problems will
keep getting worse.

An effective solution for smart parking can be implemented
by many kind of new technologies. With the growth of sensor
technologies, studies [2] [3] [4] described parking lots that
were installed with sensors to determine whether the slot is
occupied or not. This approach has a high cost due to the need
of installing multiple devices, especially with large or existing
parking lots without the suitable infrastructure. Meanwhile,
paper [24] introduced a system using IoT technology and
TensorFlow, conbining with Android device for their smart
parking system. However, the system were still testing on
dataset and using sensor system, which is reason why it is
still expensive for checking parking availability. Therefore,
a camera-based solution is recently proposed to reduce the
number of installed devices and deployment cost. However,
detecting the parking lot’s status through visual information
requires a large amount of computational processing to reach
optimal accuracy and efficiency.

Collecting all raw data from sensors can lead to delays
in system’s responsiveness and network performance so Edge
Computing has been applied to extract the necessary raw data
for further processing. Instead of processing all data at the
central processing unit, Edge Computing system processes
data at the node where the data was generated. This method
focuses on processing the data as close to the source as
possible. Edge AI (Artificial Intelligence) is the combination
of Edge Computing and AI with the aim to accelerate the speed
of processing data at the edge nodes. Instead of sending all the
data to the server, local devices only need to send the result
of the computed data. Edge Computing/ Edge AI is suitable
for systems that do not depend much on internet connection
speed and require immediate data processing (image and video
analysis) such as surveillance cameras or self-driving vehicles.

Moving DNN compute to the edge devices requires a lot of
optimization for the power budgets and the the performance
levels available at the edge. The communication from the edge
to the cloud has many issues as well that come in to play
when trying to keep devices size small. Research has shown
that through quantization and pruning the neural network, the
computational intensity can be lowered drastically.

Many methods and implementations of identifying empty
spaces in parking lots have been introduced over the years. In
[5], a system uses edge computing, cameras and AI to achieve
this. A set of cameras and Deep Learning techniques used to
detect parking space status and edge computing devices were
installed and worked together as a data analysis and managing
system. Another solution was proposed in [9], where a system
used cameras and lights to control parking. The light system
toggles based on the driving direction of the cars, which are
detected by the Deep Learning Algorithm. The controller and
algorithm was implemented inside an SoC board. Tests were
run on a dataset and the system returned positive results.

In this paper, we propose a solution for heterogeneous
System-on-Chip platforms fast inference accelerator, scalable
real-time interpretation of image sequences which helps to
automate the detection of parking spaces.

The rest of this paper is organized as follow. Section 2
outlines the background knowledge and related works. Section
3 presents our proposed methodology. The experiment results
will be discussed in Section 4., and the conclusion of our



research work is delivered in Section 5.

II. BACKGROUND AND RELATED WORK

In this section, we will first describe some basic concepts
, and then outline some other works that is related to our
research works.

A. Edge Computing

In order to optimize the latency and scalability of Smart
Parking systems, machine learning algorithms are imple-
mented in edge devices. Support vector machine (SVM), deep
learning and neural networks (NNs) are the most deployed
algorithms corresponding to different applications. Bringing
those techniques to devices requires the need to meet the
model design and compression which are adapted to the
hardware.

Many hardware platforms have been developed and brought
to the market by big companies in the industry such as Intel,
Xilinx, NVIDIA, etc. to ensure that edge computing operates
AI in an efficient way and meets system’s requirements. There
are many popular types of hardware including central pro-
cessing unit (CPU), graphics processing unit (GPU) and field-
programmable gate array (FPGA) which have been adapted to
perform AI on edge devices. For general-purpose applications,
Raspberry Pi is used as an edge device. The Raspberry Pi3
was run in [14] to detect and count the number of vehicles
via video stream on the street using OpenCV5 (Open Source
Computer Vision Library). Although Raspberry Pi is widely
chosen in certain AI systems because of its flexibility, it is
still not powerful enough for advanced deep learning and AI
algorithms. To speed up the calculation and increase the per-
formance, NVIDIA Jetson Nano has been available with GPU
acceleration. One of the many famous applications running on
Jetson board is the Jetbot robot. This robot, with the help of AI,
can find and avoid many obstacles. For example, Jetbot was
used to deliver agricultural tools to its owner while avoiding
many objects that were determined as obstacles [15]. Apart
from using GPUs, Ultra96-v2 - the Xilinx Zynq UltraScale+
MPSoC - can also accelerates machine learning algorithms
with FPGA. Taking the advantage of this architecture, in [16],
video processing using deep learning for smart IoT systems
was implemented on Ultra96-v2.

B. Binary Neural Networks

Binary Neural Networks (BNN) has emerged as a suitable
way for edge devices to save the storage and computation
power. The main idea behind BNN is to replace floating
point operations with bitwise boolean operations, thereby
introducing a new approach for training and inferencing
neural networks, where weight’s and activation’s parameters
are binarized at training time, and then used to compute
the parameter’s gradients. Binarization is a 1-bit quantization
where data can only have two possible values, namely -1
(0) or +1. There are two popular methods for binarization:
deterministic function or stochastic function:

xb =

{
+1 if x ≥ 0
−1 otherwise

(1)

C. Related Works

Smart parking system has received a lot of study in recent
years due to its necessity in the modern world. Convolutional
Neural Network (CNN) has been applied to identifying the
occupancy status of the parking space by [13]. The authors
tested two CNN architectures, namely mAlexNet and mLeNet,
both of which have less than five trainable layers and take a
224x224 RGB image as input. To run these deep learning
techniques, the solution was to installed the Raspberry Smart
Cameras, which is Raspberry Pi 2 model B equipped with the
standard Raspberry Pi camera module, and mounted it in an
outdoor camera box. The papers above introduced solutions
that were only tested on developed countries with suitable in-
frastructure for smart parking. Some papers described projects
that were only tested using the CNRPark dataset.

Bura et al. [6] proposed a fully end-to-end application
parking occupancy detection system using top-view camera
images utilizing custom AlexNet. The dataset were trained
and validated using 150,000 images and in terms of reference
time. OpenALPR was used for license plate recognition and
Tiny Yolo was used for parking spot classification [6]. The
results of [6] showed that there was a dramatic decrease in
inference time for the custom network model.

Regarding classification problems, [7] provided a solution
that was divided into offline-training and real-time operation,
then a SVM classifier was used to extract vehicle and non-
vehicle parts from regions of interest. The tests performed
on their dataset provided over 91% accuracy in detection. [8]
presented a solution that only requires low-cost and low-power
requirement using Internet of Things (IoT). The experiment
collected data from Melbourne (Australia) and San Francisco
(USA) as input. They used three models, Mean square error
(MSE), Mean absolute error (MAE) and Coefficient of de-
termination R2, to measure performance of machine learning
models using Regression Tree, Neural Network and Support
Vector Regression respectively. The evaluation revealed that
Regression was best at predicting parking availability based
on the dataset. [7] and [8] got results for object detection but
they did not focused on implementing a system for parking.

Model of [10] detects edges of objects in parking lot using
Canny algorithm and track object by analyzing the changing
of pixels in captured images using Blob detection techniques,
image subtraction between video frames in grey-scale to find
the differences and turn image into black and white then focus
on the changing of object.

[11] introduced a system utilizing cameras and ultrasonic
sensors, which is also an effective solution. The system
consists of several essential parts: the detection of license plate
number, the central information processing system, the net-
working and the mobile application. The system implemented
Node-RED and OpenALPR. Cameras are used to capture
vehicles’ presence as well as their license plates. Ultrasonic



sensors are used to confirm parking activities. Raspberry PI 3
boards were used as Wi-fi Routers and Hubs to connect the IoT
devices together. Raspberry PI 4G + GPS Shield was installed
on the Raspberry PI to add 4G capability. Edimax wireless
nano USB Adapter was attached to enable the Raspberry PI
to become a Wi-fi Router with speed up to 150Mpbs according
to their paper.

In [12], the paper proposed a system that can predict future
congestion due to parking and from that, recommend drivers
the best route to avoid congestion. They introduced an LSTM
(Long Short-Term Memory) model for multivariate time series
forecasting of parking lots. The project used the Keras library’s
provided tools for building and learning neural networks and
TensorFlow for the backend.

Some other researches focused on implementing camera-
based solution for parking detection. System [5] consists
of a Camera, a Raspberry Pi, a Firebase Database Cloud
Computing platform and a user mobile application. The whole
process starts by taking real-time images then converting the
image color to binary or black and white to more easily
identify the object and background. The Raspberry Pi 3B was
programmed with the Haar-Cascade and AdaBoost Learning
Algorithm, which processed the data and then send it to the
FireBase Database Cloud platform.

Paper [9] introduced a video-based smart control system
which also utilized a street-light controller. The system detects
vehicles using streetlight cameras and then suggests parking
space on the side of the road to minimize time needed to find a
parking space. A YOLO v3 detection model with MobileNet
v2 was implemented on a Jetson TX2 board, yielding over
90% accuracy in any weather condition.

Lastly, we take a look at some related works that aim to
accelerate and improve machine learning capability of FPGAs.
The authors of paper [17] introduced their result on optimize
BNNs (Binary Neural Networks) and 1-bit CNNs - ”extremely
compressed version of BNNs” - through six aspects, they
minimizing the quantization error, improving the loss function,
or reducing gradient error. Their first result was MCN, with the
end-to-end framework, approach the unbinarized filters. Base
on MCN (modulated convolutional networks), they devel-
oped CBCN (mirculant binary convolutional networks), RBCN
(rectified binary convolutional networks), BONN (Bayesian
optimized 1-bit cnns) for improving training process. Paper
[18] proposed FINN as a framework for building scalable
and fast BNN inference accelerators on FPGAs. According
to their numbers, it achieved the fasted reported neural net-
work inference implementation on MNIST, CIFAR-10 and
SVHN benchmark dataset. Using their novel parameterizable
dataflow architecture and optimizations, the authors presented
unprecedented classification rates along with minimal power
usge and latency which are paramount for real-time embedded
surveilance and monitoring system.

In this paper, we will focus on how to implement a smart
parking system on developing countries such as Vietnam. The
system should be low-cost, be able to operate in real-time and
has good accuracy.

Fig. 1. Parking lot occupancy detection based on a heterogeneous platform.

III. METHODOLOGY

In this research, we propose a parking lot occupancy detec-
tion solution based on a heterogeneous computing platform.
Our solution allows the integration of surveillance camera
systems as well as sensor devices to collect and real-time
process data for smart parking systems.

The architecture of our solution is depicted in Fig. 1. In
this solution, we design an environment for software and
hardware co-processing based on two significant components
of a heterogeneous platform : the Field Programmable Gate
Array (FPGA) Programmable Logic (PL) and the Multi-
processor Processing System (PS). Where the PL accessing
programmable logic overlays to perform the machine learning
acceleration providing hardware acceleration for computation-
ally intensive arithmetic, and the PS gets the data from sensors
and passes to the memory where the PL can access. Moreover,
we also leverage the I/O interfaces peripheral parking compo-
nents such as surveillance camera systems, parking meters,
etc.

The co-processing system is responsible for handling two
main tasks: Parking space detection and parking lots occu-
pancy classification. The main objective of the first task is to
identify the coordinate of parking spaces, the second task to
classify whether parking spaces is empty or not.

We assumed that the camera is fixed at its installed place
therefore the parking slot’s position will be unchanged. Be-
cause of this property, we only need to determine the position
once. At first, it requires an image of parking lot captured from
the camera placement before starting the detection. Then, the
parking spot will be determined and we will save its width,
height and coordinates. Furthermore, each spot is also marked
by a specific ID number to distinguish with others.

The device will identify the possible parking spots in the
input frames collected from cameras, and extract images of
spots for classification. Depending on the coordinates of the
spots which are determined before, the spots will be cropped
out. Since the model we use for classification requires the
input of 32x32 image, all the cropped spots is resized to 32x32
images and passed to the PL for further processing.

For the classification task, we employ Binary Neural Net-
works (BNN). Our model is leveraged BNN’s custom con-



Fig. 2. BNN’s custom convolution neural networks (CNV) topology

volution neural networks (CNV). The characterization of the
BNN-CNV is described as follows:

• 3x3 convolution
• 2x2 maxpool
• 512 neurons fully connected
• popcount for accumulation
• threshold for batchnorm normalization and activation

function
• boolean OR for max-pooling
• folding for matrix–vector multiplication
CNV contains a succession of (3x3 convolution, 3x3 convo-

lution, 2x2 maxpool) layers repeated three times with 64-128-
256 channels, followed by two fully connected layers of 512
neurons each and a fully connected layer for classification, as
shown in Fig. 2.

The convolutional operation of CNN which is multiply-
accumulation (MAC) can be transformed to binary multiply-
accumulation (BMAC) operation by applying XNOR followed
by popcount operation in which set bit represents +1 while
unset bit represents -1. After the XNOR operation performs the
multiplication of binary values, instead of accumulation with
signed arithmetic as in CNN, a popcount operation implements
the summary of binary dot product by counting the number of
bit 1. Performing the BNN on FPGAs is significantly efficient
since it is easy to map and parallel the XNOR and popcount
operations on the LUTs (Look-up Tables) and FFs (Flip-flops).

The output of the XNOR and popcount operations is then
fed to a single thresholding function to determine output
activation. As batch normalization normalizes data with the
mean of 0 and variance of 1, it can be computed from the data
before normalization which value will equal 0 after normal-
ization. Moreover, the activation function in BNN actually is
the thresholding function with the threshold of 0. Hence, using
threshold can achieve the same output as batch normalization
and activation function.

The max-pooling operation aims to get the maximum value.
In this model, the value is represented by set and unset bits,
therefore, the maximum value of the set of these bits is
calculated through the Boolean-OR.

Once the PS has received the classification result from the
PL, the parking spaces are immediately determined whether
they are occupied or not.

IV. EVALUATION

To evaluate our solution, we take parking spaces data from
two dataset: PKLot and CNRPark+EXT. Because this problem

focuses on car parking occupation, the dataset will include
occupied and empty parking slots.

CNRPark+EXT is a dataset for visual occupancy detection
of parking lots of roughly 150,000 labeled images (patches)
of vacant and occupied parking spaces, built on a parking lot
of 164 parking spaces. CNRPark+EXT extends CNRPark, a
preliminary dataset composed by 12,000 images collected in
different days of July 2015 from 2 cameras. The additional
subset, called CNR-EXT, is composed by images collected
from November 2015 to February 2016 under various weather
conditions by 9 cameras with different perspectives and angles
of view. CNR-EXT captures different situations of light condi-
tions, and it includes partial occlusion patterns due to obstacles
(trees, lampposts, other cars) and partial or global shadowed
cars1. On the other hand, PKLot dataset contains 12,417
images (1280X720) captured from two different parking lots
in sunny, cloudy and rainy days. The first parking lot has
two different capture angles. Each image of the database has
a XML file associated including the coordinates of all the
parking spaces and its label (occupied/vacant). By using the
XML files to segment the parking space, you will be able to
get around 695,900 images of parking spaces2.

We randomly divided the images from CNRPark + EXT
and PKLot dataset into three sets namely training, validation
and testing set to evaluate the performance of the model under
different circumstances. The number of images in each set is
indicated in the Table I,II & III.

We set up the experiments with four training, validation
and testing set’s combinations from the CNRPark + EXT
and PKLot dataset, as shown in Fig 3-6, for evaluating the
performance of training process. The training and validation
set use the same dataset while the testing set can be tested
on the same or different dataset. All experiment’s results are
displayed in Fig 7 where each result is corresponding to its
dataset setup.

First of all, we trained the model with two common optimiz-
ers, RMSProp and Adam. RMSProp which is a gradient-based
optimization technique used in training neural was developed
as a stochastic technique for mini-batch learning, whereas the
Adam optimizer makes use of a combination of ideas from
other optimizers networks - AdaGrad and RMSProp. Currently
the Adam optimizer is the preferred optimizer for use with
deep learning models. In our experiments, despite the differ-
ences in dataset and batch size, Adam had a lower training
loss and better testing accuracy compared to RMSProp.

Besides that, we also evaluated the performance of two
above parking car dataset. When all data was taken from only
one dataset, either CNRPark + EXT or PKLot, we observed
the low training loss which were less than 0,001 in most cases
and high accuracy which were all nearly 100%. In contrast, a
significant decrease of accuracy, which varied from over 70%
to 85%, was witnessed when using different dataset to test the
model (experiment 10 to 15). Moreover, the training process

1http://cnrpark.it/
2https://web.inf.ufpr.br/



using PKLot was better as it got a lower training loss and a
higher testing accuracy. As can be seen, individual dataset can
not cover all the possible views (or slots) in the parking place,
therefore it’s necessary to train the data from both dataset.

Fig. 3. Experiment 1, 2, 3 & 4 dataset setup

Fig. 4. Experiment 4, 5, 6, 7, 8 & 9 dataset setup

Fig. 5. Experiment 10, 11, & 12 dataset setup

During training, the differences in accuracy between three
cases of weight and activation with the same setup of dataset
and batch size are under 5% and even nearly equal in some
experiments. When deploying the model on Ultra96-v2 devel-
opment board, it showed that the model using 1-bit weight
along with 1 or 2-bit(s) activation gave the result about 12%
faster than using 2-bit Weight 2-bit Activation in inference
time which was calculated from when the data is transferred
to the PL to when the result is sent back to the PS.

Fig. 6. Experiment 13, 14, & 15 dataset setup

TABLE I
ULTRA96-V2 ON-BOARD INFERENCE TIME

No Weight Activation Inference time FPS
1 1 bit 1 bit 0,0160s 62,412
2 1 bit 2 bits 0,0160s 62,021
3 2 bits 2 bits 0,0182s 54,993

TABLE II
ENERGY CONSUMPTION WHEN INFERENCING CNV MODEL ON

ULTRA96V2 AND VGG MODEL ON JETSON NANO

Platform Latency (ms) FPS On-Chip Power (W) Power per image (W)
Ultra96v2 12.99 77 2.967 0.039
Jetson Nano 91.02 11 5 0.455

V. CONCLUSION

In this paper, we presented a real-time HW/SW co-design
methodology to binary neural network. Utilizing such a het-
erogeneous platform as the Zynq SoC allows the inference
network to be implemented within the programmable logic
of the device, providing a significant increase in performance
while keeping power consumption low. The low cost to imple-
ment and run this advanced detection capability demonstrates
that such a system may be accommodated within a platform
for immediate application, and in support of more complex
operations of high value missions or payloads.

ACKNOWLEDGEMENT

This research is funded by Ho Chi Minh City University
of Technology - VNU-HCM under grant number To-KHMT-
2020-xx. We acknowledge the support of time and facilities
from Ho Chi Minh City University of Technology (HCMUT),
VNUHCM for this study.

REFERENCES

[1] R. Arnott, T. Rave, and R. Schob, “Alleviating Urban Traffic Congestion”.
Cambridge, MA, USA: MIT Press, 2005.

[2] L. Mainetti, L. Patrono, M. Stefanizzi, R. Vergallo, “A Smart Parking
System based on IoT protocols and emerging enabling technologies”,
IEEE 2nd World Forum on Internet of Things (WF-IoT), 2015.

[3] J. K. Suhr and H. G. Jung, “Sensor fusion-based vacant parking slot
detection and tracking,” IEEE Transactions on Intelligent Transportation
Systems, vol. 15, no. 1, pp. 21–36, Feb 2014.

[4] Sadhukhan, Pampa. “An IoT-based E-parking system for smart cities,”
2017 International Conference on Advances in Computing, Communica-
tions and Informatics (ICACCI), 2017.



Fig. 7. Experiments result with training loss (above) and testing accuracy (below)

[5] I. M. Hakim, D. Christover, and A. M. Jaya Marindra, “Implementation
of an Image Processing based Smart Parking System using Haar-Cascade
Method,” 2019 IEEE 9th Symposium on Computer Applications Indus-
trial Electronics (ISCAIE), pp. 222—227, 2019.

[6] H. Bura et al, “An Edge Based Smart Parking Solution Using Camera
Networks and Deep Learning,” 2018 IEEE International Conference on
Cognitive Computing (ICCC), pp. 17–24, 2018.

[7] Orhan Bulan et al, “Video-based real-time on-street parking occupancy
detection system,” Journal of Electronic Imaging 22, 2013.

[8] Yanxu Zheng, S. Rajasegarar, and C. Leckie, “Parking availability pre-
diction for sensor enabled car parks in smart cities”, 2015 IEEE Tenth
International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), pp. 1–6, 2015.

[9] Qiyang Chen et al, “Video-Based Parking Occupancy Detection for Smart
Control System”, Applied Sciences 10, p. 1079, 2020.

[10] Daniel Ng Chiu Loong, Suhaila Isaak, and Y. Yusof, “Machine vi-
sion based smart parking system using Internet of Thing”, TELKOM-
NIKA Telecommunication Computing Electronics and Control 17, pp.
2098–2106, 2019

[11] J. Ruili et al, “Smart Parking System Using Image Processing and
Artificial Intelligence”, 2018 12th International Conference on Sensing
Technology (ICST), pp. 232–235, 2018.

[12] Petr Fedchenkov et al, “An Artificial Intelligence Based Forecasting in
Smart Parking with IoT,” 18th International Conference, NEW2AN 2018,
and 11th Conference, ruSMART 2018, St. Petersburg, Russia, August
27–29, 2018, pp. 33–40.

[13] G. Amato et al, “Car parking occupancy detection using smart camera
networks and Deep Learning”, 2016 IEEE Symposium on Computers and
Communication (ISCC), pp. 1212–1217, 2016.

[14] Anandhalli, Mallikarjun and V. Baligar, “A novel approach in real-
time vehicle detection and tracking using Raspberry Pi”, alexandria
engineering journal 57 (2017), pp. 1597-1607.

[15] S. Kawakura and R. Shibasaki, “Deep Learning-Based Self-Driving Car:
JetBot with NVIDIA AI Board to Deliver Items at Agricultural Workplace
with Object-Finding and Avoidance Functions”, European Journal of
Agriculture and FoodSciences (EJFOOD), vol. 2, no. 3, Jun. 2020.

[16] O. Eldash, A. Frost, K. Khalil, A. Kumar and M. Bayoumi, “Dynam-
ically Reconfigurable Deep Learning for Efficient Video Processing in
Smart IoT Systems,” 2020 IEEE 6th World Forum on Internet of Things
(WF-IoT), New Orleans, LA, USA, 2020, pp. 1-6

[17] W. Zhao, T. Ma, X. Gong, B. Zhang and D. Doermann, ”A Review of
Recent Advances of Binary Neural Networks for Edge Computing,” in

IEEE Journal on Miniaturization for Air and Space Systems, vol. 2, no.
1, pp. 25-35, March 2021, doi: 10.1109/JMASS.2020.3034205.

[18] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela
Blott, Philip Leong, Magnus Jahre and Kees Vissers, ”FINN: A
Framework for Fast, Scalable Binarized Neural Network Inference,”
in Proceedings of the 2017 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays (ACM), Feb 2017, doi:
10.1145/3020078.3021744.

[19] Author, F.: Article title. Journal 2(5), 99–110 (2016)
[20] Author, F., Author, S.: Title of a proceedings paper. In: Editor, F., Editor,

S. (eds.) CONFERENCE 2016, LNCS, vol. 9999, pp. 1–13. Springer,
Heidelberg (2016), doi: 10.10007/1234567890.

[21] Author, F., Author, S., Author, T.: Book title. 2nd edn. Publisher,
Location (1999)

[22] Author, A.-B.: Contribution title. In: 9th International Proceedings on
Proceedings, pp. 1–2. Publisher, Location (2010)

[23] LNCS Homepage, http://www.springer.com/lncs. Last accessed 4 Oct
2017.

[24] M. O. Hasan, M. M. Islam and Y. Alsaawy, ”Smart Parking Model
based on Internet of Things (IoT) and TensorFlow,” 2019 7th International
Conference on Smart Computing & Communications (ICSCC), 2019, pp.
1-5, doi: 10.1109/ICSCC.2019.8843651.


