
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Convolutional Neural Network Hardware

Implementation for Flower Classification

Abstract— Flower classification becomes more and more

important as the medical and industrial world grows. Based on

that emergency, Convolutional Neural Network (CNN) proposed

a way for computer to recognize flowers in place of human as the

data becomes enormous. This study proposes the hardware

architecture for CNN which is tested with FPGA. Numbers and

type of layers, as well as their properties are also proposed for

effective hardware implementation. Math functions that engine

the CNN are also well-cared for the smoothness of both feed

forward and back propagation processes. Measurements were

taken on the proposed CNN; its accuracy and yield were verified.

It also appeared that the classification accuracy of the CNN is

strongly affected by the training conditions as well as the flower

characteristics. This indicates that further image pre-processing

can improve the accuracy of the CNN, which can be implemented

separately with the CNN or embedded in CNN’s first layers by

controlling the weights.

Keywords— AI, CNN, flower classification, hardware

implementation, feed forward, back propagation.

I. INTRODUCTION

Much research in recent years has focused on using various

Convolutional Neural Network (CNN) for object classification

[1]. Object classification is the process of distinguishing one

object from other objects, which provides a systematic view for

scientists to identify them for later usage and for avoidance of

misjudgment. CNNs, which mimic human neurons and brains,

are designed to give the computer learning ability through their

adjustable internal properties. However, it has still been a huge

gap from CNN’s intelligence to that of a person, hence

currently CNN has been used for classification of homogenous

objects only, such as human faces, animal, or vehicle

classification [2][3][4].

Among those homogenous objects, flower classification

plays an important role in plant pathology, medicine, and

agriculture. They have been considered as subjects for many

CNN research and applications, as they are easy to capture

images and extract feature. For example, Busra et al. provided

a CNN model that use image processing techniques to extract

flower features before classification [5]. Another research from

Chhaya et al. used transfer learning technique to make use of

the existed trained CNNs [6]. Despite the fact that many CNNs

has been built, most of the current CNNs for flower

classification to the best of our knowledge has been based on

software only, which has hindered the ability of acceleration as

well as efficiency optimization of the hardware.

This paper proposes a fully hardware implementation of a

CNN for flower classification. Our CNN architecture contains

16 layers and processes on RGB images of 10 different kinds

of flower. ReLU is selected as the activation function since its

match well with hardware implementation, while max pooling

is selected as the pooling method because of the color-

dependent characteristic of flower [7]. After implementation on

real hardware, the proposed CNN seemed to perform the

classification with great accuracy. However, the accuracy of the

classification does vary in different training conditions

(different batches and epochs), and the particularly

characteristic of each kind of flower does affect the result as

well. Further image pre-processing is also a factor that makes

an impact on the performance since it affects the feature

extraction process. Hence, the classification results are

presented specifically for each scenario and evaluations are

given for further research later.

The rest of this paper is organized as follows. Section II
presents the methodology for construction of the proposed
CNN. The hardware implementation, which includes structural
blocks, the state machines, and the hardware operation, is
described in section III. Section IV contains the experimental
results, and the conclusion of this study is presented in the last
section.

II. METHODOLOGY

In this section, we provide a systematic view of how the

proposed CNN is constructed and what makes it work. Basic

components of the CNN like layers and nodes, as well as

classification operation are given with specific properties,

which were carefully considered from different scenarios for

hardware optimization.

A. Classification

An identical CNN contains a number of layers as shown in

Fig. 1. These layers are divided into 2 groups: feature learning

and classification. The convolutional and pooling layers are

responsible for feature learning. Convolutional layers use

weight to calculate convolution with the image matrix to extract

Trang Hoang, Thinh Do Quang

Department of Electronics, Faculty of Electrical and Electronics Engineering,

Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10,

Ho Chi Minh City, Vietnam

Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District,

Ho Chi Minh City, Vietnam

hoangtrang@hcmut.edu.vn

its feature (called feature map), while pooling layers reduces

that feature map even smaller without losing its characteristic.

The latter layers are used for classification purpose. Minimized

feature map from the feature learning is flattened into a vector

(through flatten layer); then that vector is multiplied with

another weighted vector to produce a vector that has the same

size as the number of types of objects required to be classified.

Finally, that vector is passed through a softmax function [8] to

produce result in the form of probability. The nearer the result

to 1, the higher the probability of classification the input object

into the corresponding type is.

Fig. 1. An identical CNN architecture.

B. Activation function

Let us define the input data as X, the weights (internal

properties) of the CNN as W, and the output of the CNN as Y.

Y is a vector with a width of n elements; each element

represents a type of object that the CNN classifies. To get Y, a

function which includes X and W are performed. The purpose

of this function is to find the "borders" that separate every

"region" representing types of objects, and that function is

called the activation function. Since the CNN’s structure is

divided into layers, so the activation function can also be

broken into smaller activation functions for each layer.

Therefore, those activation functions need to be non-linear, for

the "borders" of object types are scarcely linear and a

summation of linear functions is just a bigger linear function

and CNN’s layers are meaningless then.

Several activation functions have been provided by other

previous research [9][10][11]. The most used ones are sigmoid

and ReLU function; each one has its own pros and cons. These

two functions are non-linear, which fulfill the first requirement

of an activation function. While sigmoid function is well-

bounded in the range of [-1;1], ReLU function does not have an

upper bound in the positive number domain. On the other hand,

sigmoid function is not easy to compute (contains exponential),

whereas ReLU calculation is simple even when finding the

derivatives for the back-propagation process.

C. Gradient descent

To determine error or loss of a CNN, loss function is defined

to show how much precisely the CNN can classify; the smaller

the loss function, the more accurate the classification is. Based

on that point, gradient descent is an optimization algorithm for

finding a local minimum of that loss function of the CNN.

Gradient descent is based on basic mathematic theorem. The

sign of the derivative of the function at an arbitrary point can

tell if it is on the right (larger) or on the left (smaller) of the

minimum point. Gradually adjusting the test point until it

reaches the minimum point is how gradient descent works. The

adjustment step is called learning rate and it determines how

fast a CNN can learn.

As gradient descent is used to find local minimum of the loss

function, the loss function itself also needs to be easy to find

the derivative. Prior research did provide many loss functions

and each one of them has its own strength. Hichame et al. did a

research that compares the most common loss functions [12]:

weighted cross-entropy loss, Huber loss, and sparseMax loss.

The weighted cross-entropy loss is strong for awareness of class

imbalance while the other two are more effective in learning

speed. For the proposed CNN, we determined to use weighted

cross-entropy loss since hardware implementation does

accelerate the speed and we can focus more on the accuracy

performance.

D. Image pre-processing in CNN

Theoretically, CNN’s weights should be updated after each

training time (through back-propagation) and can be randomly

initialized. However, we did notice that if the initialized

weights are too far from the optimized ones, it takes more time

for the training process. And there is a chance that two nodes

from the same layer may extract the same feature from the

original image, especially at the first layers of the CNN, since

the weight initialization for them can be nearly the same. This

results in lower performance as some features may be

concentrated on too much, while some other ones are not

extracted. And in the case of flower, which has many endemic

cases, this means some flower classes give better accuracies

since the matching feature are extracted, whereas some classes

give worse results.

As stated before, the convolutional layers are used for feature

extraction, using their kernel matrices. Previous research has

determined some specific kernel matrices for specific purposes

on the feature extraction [13][14], which can include edge

detection, blur, sharpening. This study hence provides a way to

reconfigure the weights (which also mean the kernels) of first

layers of the CNN to observe the result and then compares to

the randomly initializing one. Some kernels of the first layers

are configured for edge detection and sharpening while some

others are randomly initialized to allow the CNN to detect other

features.

III. HARDWARE IMPLEMENTATION

In this section, we present the specific hardware structure of

the proposed CNN, which includes the controllers and the

layers. State machines are described for the control operation

while structural blocks give a view of the data processing

between layers.

A. CNN structure

To implement the CNN for flower classification in this study,

we proposed a CNN of 16 layers, which is based on:

• Input: RGB image of 508x508x3 pixels.

• Output: A 10x1 vector, each element

correspondingly represents a flower class.

• Training set: includes 650 images with 65 images

for each type of flower, as well as their labels.

• Test set: includes 150 images with 15 images for

each type of flower.

The properties of each layer are shown in Table I as below.

The input size of the images, which is 508x508x3 is actually

determined backward from the last pooling layer for integral

calculation. The original size of the input images does vary,

since they are separated collected by different means and

different peoples, so they are cropped to a considerable size

for uniform input of the proposed CNN. The crop process is

described in section IV.

TABLE I. CNN LAYER PROPERTIES.

No Layer type Input size Output size

(feature

map)

Number

of feature

map

1 Input None 508x508 3

2 Convolutional 508x508 504x504 6

3 Pooling 504x504 252x252 6

4 Convolutional 252x252 248x248 6

5 Pooling 248x248 124x124 6

6 Convolutional 124x124 120x120 12

7 Pooling 120x120 60x60 12

8 Convolutional 60x60 56x56 24

9 Pooling 56x56 28x28 24

10 Convolutional 28x28 24x24 24

11 Pooling 24x24 12x12 24

12 Convolutional 12x12 8x8 24

13 Pooling 8x8 4x4 24

14 Flatten 4x4(x24) 384x1 N/A

15 Fully connected 384x1 100x1 N/A

16 Output 100x1 10x1 N/A

B. Classification threads

The data moving within the CNN can be divided into four

threads:

• Initiating weights.

• Feed forward.

• Back propagation.

• Updating weights.

Three threads including initiating weights, feed forward and

updating weights are processed from input layer to output layer,

while back propagation is the only thread that flows the

opposite way.

The initiating weights thread is process only once at the start

of the training set to randomly generate weights for the CNN

(Gauss distribution) [15]. After this thread is done, feed forward

is process on input datum to extract its feature and calculate the

output vector. That vector is included in the loss functions to

estimate errors, which starts the back propagation thread

(gradient descent). At last, the updating weights thread is run to

update the weights based on results of the back propagation

thread.

C. Control blocks

At input layer and output layer, two control blocks are

defined to control all threads, which we called startpoint and

endpoint controller. These two blocks contain two state

machines, which interact with the input and output layer to

determine when a thread needs to be run, and when to stop it.

They are also responsible for how training process can be done,

through controlling given batch and epoch. Their state machine

graphs are shown in Fig. 2.

The startpoint controller will switch its state to S0 if it detects

input datum, then if it is enabled to train or encounters a reset

signal, it switches to S1 for initiating weight thread. Then, the

startpoint controller will go to S2 and S3 as the feed forward

thread process. It then waits for the back propagation thread to

finish to start the updating weights thread by switching to S5

state. The cycle then begins with another input datum.

The endpoint controller is simpler as it just needs to notice

the startpoint controller about the completion of the feed

forward, initiating weights and updating weights process so that

the startpoint controller can continue.

D. Layers

Because the CNN in this study processes four internal

threads, the design of each layer is also divided into four blocks

for each thread.

As the convolutional kernel "moves" throughout the input

matrix, it is simple to use counters to change the location (or

address) where the kernel starts convoluting after each clock

tick. The convolution results in one number that is also guided

by those counters to fit in the output feature map. The design of

this convolution cell is shown in Fig. 3.

The full designs of the convolutional layers are presented in

Fig. 4. Firstly, Fig. 4.a shows the design for the feed forward

thread, in which a counter is used to select input feature maps,

choose the corresponding kernel for calculating the

convolutional result by using the convolutional cell as stated

above. The results are passed through a ReLU activation

function and pasted into the output matrix (output feature map).

Secondly, the design of convolutional layer for back

propagation thread is in Fig. 4.c, is nearly the same as the design

for feed forward process, however, the kernel is "flipped", and

the input matrix is not the feature map but the error matrix.

Finally, the design for initiating and updating weights are

presented in Fig. 4.b and 4.d, in which the kernels are generated

or adjusted.

The design for pooling layers is much simpler as they do not

contain the weights. Only designs for feed forward and back

propagation are required, and they are shown in Fig. 5.

Subtraction blocks are used to compare the pixel values within

the a 2x2 region of the feature map, which then results in the

maximum value. For the back propagation thread, the saved

signed values from feed forward thread are used to return the

derivative to its corresponding address through the demuxes.

IV. RESULTS

This section gives the classification results of the proposed

CNN implemented on real hardware. We carefully evaluated

the results in different scenarios, as well as considered the

accuracy for each particular flower class, from which we

summarized the impact of them on the flower classification.

The image-processing kernels are also taken into account for

observing theirs influence on the classification.

A. Datasets

This paper used the well-known flower dataset of Oxford

University [16], which contains 17 categories of flower with

800 images of each class. As stated before, only 10 of these

flower classes were selected for the proposed CNN model,

which are Daffodil, Snowdrop, Bluebell, Tiger Lily, Fritillary,

Sunflower, Daisy, Cowslip, Buttercup, and Windflower.

However, the images in the dataset were different in size, so

a function process in Matlab was run to crop these images into

the size of 508x508 pixels. To maintain the focus of the image

(avoid flower features being lost), feature extraction technique

was used to keep the most important region, including the

petals, pistil, and stamens. From the original image, the

background is discarded using segmentation techniques [17],

then the texture and shape features are extracted [18] to

determine the location of the pistil and stamen (usually at the

center of the flower), which will then be the center of the

cropped images. After all the original images are cropped, the

dataset was ready as uniform input of the CNN.

For random ordering the images in the dataset into the CNN

to avoid same flower characteristic being repeated

consecutively, a random function was calculated to rename the

name of the original images into different ordering numbers

using the commonly used pseudo-random generator, linear-

feedback shift register [19]. The images were also divided into

the training set and test set, which were 650 and 150 images

respectively, of each class.

B. Simulation

Before real hardware implementation, the behavior of the

CNN was pre-tested through simulation on Questa Sim 10.6c.

Questa Sim 10.6c is a software that effectively support

SystemVerilog and provides good assistance for hardware

testbench as well as other verification processes.

SystemVerilog randomization feature was used to first-time

establishment of the CNN’s weights. Input images from the

datasets were read as hex files using SystemVerilog system task

$readmemh. The output classification results as well as trained

weights were stored also as hex files for later evaluation.

C. Hardware setup

In order to implement the proposed CNN in real hardware

model, Virtex-6 FPGA of number XC6VSX475T of Xilinx was

used for high signal processing capability. Vivado Design Suite

HLx software was selected to synthesize and implement the

SystemVerilog code of the CNN.

The Vivado Design Suite HLx also provided a tool to

generate a block memory with the initial content as a given

image [20], so this was how the FPGA board processed through

the training and test set. Moreover, the output vectors were

programmed to connect to the FPGA LEDs for a visionary view

of the classification result. And all weights values were stored

in the provided block RAMS with patterned addresses for each

layer’s access.

Fig. 2. Controller state machines.

D. Training and test results

To evaluate the impact of different scenarios on the

classification result, we selected several numbers of epoch and

batch. In Table II, the comparison of accuracy in each scenario

are shown. We found that as the epoch was increased, the

classification result became more accurate, however, if the

epoch is too large, the CNN seemed to be overfitting and it

became less precise. The same thing happened as the batch

increased; larger batch increased the accuracy by avoiding

overfitting (avoid adjusting weights too much) but too large

batch lowered the efficiency since the CNN had to recalculated

weights to match too many input images.

At another aspect, the classification results were also

different for each class. Flower class with special

characteristics tended to result in better classification. For

example, as shown in Table III (at epoch = 3 and batch = 3),

class 9 (buttercup) had a high accuracy of 97.33, maybe because

of its plain color and clearly separated petals. Class 6

(sunflower) also achieved better results, thanks to its easy-

recognizable disk florets at the center. On the other hand, class

2 (snowdrop) and class 8 (cowslip) had lower accuracy due to

the same tube-shaped of both flowers and due to the diversly

camera angles of the training images.

Finally, the study evaluates the impact of using image-

processing kernel in the CNN’s first layers instead of randomly

initializing them. The accuracy results can be seen in Table IV.

It was shown that using the pre-determined kernels did improve

accuracy for some kinds of flower. The used kernels are for

edge detection and sharpening so it results best with specific

texture like fritillary and snowdrop. However, the color features

of the flowers seemed to be lowered as in the case of

Windflower and Daffodil. These two flowers have very similar

shape but different colors, and the CNN in this scenario often

mistook between these two flowers. It indicates that more

specific kernels should be added to first layers to be able to

extract more features. However, some features cannot be easily

extracted using kernel but using much more complicated image

processing algorithm. Later study may find a way to combine

both image pre-processing and CNN for a more efficient way

to solve the classification problem.

TABLE II. CLASSIFICATION ACCURACY AT DIFFERENT EPOCHS AND

BATCHES.

Batch Epoch = 1 Epoch = 2 Epoch = 3 Epoch = 5

1 88.47 89.13 89.20 88.27

3 90.40 92.13 93.27 91.20

5 87.20 88.73 90.13 88.40

TABLE III. FLOWER CLASSES ACCURACY COMPARISON AT EPOCH=3 AND

BATCH=3.

Class Name Characteristics Accuracy

1 Daffodil Plain color, separated petals 94.67

2 Snowdrop Tube-shaped, upside-down 83.33

3 Bluebell Grows in bunches, large pistils 92.00

4 Tiger Lily Spots, parabolic petals 94.67

5 Fritillary Spots, bell-shaped, upside-down 93.33

6 Sunflower Large disk florets, many petals 98.00

7 Daisy Many petals, plain color 94.67

8 Cowslip Tube-shaped, grows in bunches 88.00

9 Buttercup Plain color, separated petals 97.33

10 Windflower Plain color, separated petals 96.67

Fig. 3. Design of the convolutional cell.

Fig. 4. Design for convolutional layers based on the threads.

Fig. 5. Design for max pool layers.

TABLE IV. ACCURACY COMPARISON FOR THE CNN WITH IMAGE-
PROCESSING KERNELS.

Class Name

Accuracy of CNN

with randomly

initializing weights

Accuracy of CNN

with image-

processing kernels

1 Daffodil 94.67 87.33

2 Snowdrop 83.33 90.67

3 Bluebell 92.00 90.33

4 Tiger Lily 94.67 95.67

5 Fritillary 93.33 94.33

6 Sunflower 98.00 90.33

7 Daisy 94.67 90.33

8 Cowslip 88.00 92.67

9 Buttercup 97.33 93.67

10 Windflower 96.67 91.33

V. CONCLUSION

Prior work has built many CNN models for flower
classification, and they performed well in term of accuracy, by
using different techniques, not only from the artificial
intelligence field but also from the image processing field.
However, these CNN models are not hardware-based so they
may not result in the best efficiency. This study proposed a fully
hardware-based CNN in which all components and numbers are
considered for hardware application. We found that the
implemented model achieved the criteria for accuracy in
different scenarios. We also noticed that special characteristic of
each flower class does make an impact on the results, especially
flower with endemic ones. This indicates that further image
processing should be done before going into the CNN, or the
CNN’s weights of the first several layers should be pre-
determined for specific feature extraction. Later study can focus
on a combination of image processing and CNN to make use of
both of their advantages.

ACKNOWLEDGMENT

We acknowledge the support of time and facilities from Ho
Chi Minh City University of Technology (HCMUT), VNU-
HCM for this study.

REFERENCES

[1] Yamashita, R., Nishio, M., Do, R.K.G. et al. Convolutional neural

networks: an overview and application in radiology. Insights

Imaging 9, 611–629 (2018). https://doi.org/10.1007/s13244-018-

0639-9

[2] Ben Fredj, H., Bouguezzi, S. & Souani, C. Face recognition in
unconstrained environment with CNN. Vis Comput 37, 217–226

(2021). https://doi.org/10.1007/s00371-020-01794-9

[3] Z. Cao, J. C. Principe, B. Ouyang, F. Dalgleish and A. Vuorenkoski,
"Marine animal classification using combined CNN and hand-

designed image features," OCEANS 2015 - MTS/IEEE Washington,
2015, pp. 1-6, doi: 10.23919/OCEANS.2015.7404375.

[4] D. Zhao, Y. Chen and L. Lv, "Deep Reinforcement Learning with

Visual Attention for Vehicle Classification," in IEEE Transactions on
Cognitive and Developmental Systems, vol. 9, no. 4, pp. 356-367, Dec.

2017, doi: 10.1109/TCDS.2016.2614675.

[5] B. R. Mete and T. Ensari, "Flower Classification with Deep CNN and
Machine Learning Algorithms," 2019 3rd International Symposium on

Multidisciplinary Studies and Innovative Technologies (ISMSIT),

2019, pp. 1-5, doi: 10.1109/ISMSIT.2019.8932908.
[6] C. Narvekar and M. Rao, "Flower classification using CNN and

transfer learning in CNN- Agriculture Perspective," 2020 3rd

International Conference on Intelligent Sustainable Systems (ICISS),
2020, pp. 660-664, doi: 10.1109/ICISS49785.2020.9316030.

[7] T. Tiay, P. Benyaphaichit and P. Riyamongkol, "Flower recognition

system based on image processing," 2014 Third ICT International
Student Project Conference (ICT-ISPC), 2014, pp. 99-102, doi:

10.1109/ICT-ISPC.2014.6923227.

[8] Liang X., Wang X., Lei Z., Liao S., Li S.Z. (2017) Soft-Margin
Softmax for Deep Classification. In: Liu D., Xie S., Li Y., Zhao

D., El-Alfy ES. (eds) Neural Information Processing. ICONIP

2017. Lecture Notes in Computer Science, vol 10635. Springer,
Cham. https://doi.org/10.1007/978-3-319-70096-0_43

[9] Szandała, Tomasz. (2020). Review and Comparison of Commonly

Used Activation Functions for Deep Neural Networks.
[10] C. Nwankpa, W. Ijomah, A. Gachagan and S. Marshall, “Activation

Functions: Comparison of trends in Practice and Research for Deep
Learning”, arXiv:1811.03378, 2018.

[11] da S. Gomes, G.S., Ludermir, T.B. & Lima, L.M.M.R. Comparison of

new activation functions in neural network for forecasting financial
time series. Neural Comput & Applic 20, 417–439 (2011).

https://doi.org/10.1007/s00521-010-0407-3

[12] H. Yessou, G. Sumbul and B. Demir, "A Comparative Study of Deep
Learning Loss Functions for Multi-Label Remote Sensing Image

Classification," IGARSS 2020 - 2020 IEEE International Geoscience

and Remote Sensing Symposium, 2020, pp. 1349-1352, doi:
10.1109/IGARSS39084.2020.9323583.

[13] H. Takeda, S. Farsiu and P. Milanfar, "Kernel Regression for Image

Processing and Reconstruction," in IEEE Transactions on Image
Processing, vol. 16, no. 2, pp. 349-366, Feb. 2007, doi:

10.1109/TIP.2006.888330.

[14] Taichi Joutou and Keiji Yanai, "A food image recognition system with
Multiple Kernel Learning," 2009 16th IEEE International Conference

on Image Processing (ICIP), 2009, pp. 285-288, doi:

10.1109/ICIP.2009.5413400.
[15] Deng, Z.; Cao, Y.; Zhou, X.; Yi, Y.; Jiang, Y.; You, I. Toward Efficient

Image Recognition in Sensor-Based IoT: A Weight Initialization

Optimizing Method for CNN Based on RGB Influence
Proportion. Sensors 2020, 20, 286. https://doi.org/10.3390/s20102866

[16] Maria-Elena Nilsback and Andrew Zisserman, Oxford University,

Oxford, United Kingdom. 17 Category Flower Dataset. Available:
https://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html

[17] Najjar, Asma & Zagrouba, Ezzeddine. (2012). Flower image

segmentation based on color analysis and a supervised evaluation.
International Conference on Communications and Information

Technology - Proceedings. 10.1109/ICCITechnol.2012.6285834.

[18] Mabrouk, Amira & Najjar, Asma & Zagrouba, Ezzeddine. (2014).

Image Flower Recognition based on a New Method for Color Feature

Extraction. VISAPP 2014 - Proceedings of the 9th International

Conference on Computer Vision Theory and Applications.
[19] J. Savir and W. H. McAnney, "A multiple seed linear feedback shift

register," Proceedings. International Test Conference 1990, 1990, pp.

657-659, doi: 10.1109/TEST.1990.114080.
[20] Xilinx, Vivado Design Suite User Guide, UG973, June 3, 2020.

