
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Convolutional Neural Network Hardware 

Implementation for Flower Classification 

Abstract— Flower classification becomes more and more 

important as the medical and industrial world grows. Based on 

that emergency, Convolutional Neural Network (CNN) proposed 

a way for computer to recognize flowers in place of human as the 

data becomes enormous. This study proposes the hardware 

architecture for CNN which is tested with FPGA. Numbers and 

type of layers, as well as their properties are also proposed for 

effective hardware implementation. Math functions that engine 

the CNN are also well-cared for the smoothness of both feed 

forward and back propagation processes. Measurements were 

taken on the proposed CNN; its accuracy and yield were verified. 

It also appeared that the classification accuracy of the CNN is 

strongly affected by the training conditions as well as the flower 

characteristics. This indicates that further image pre-processing 

can improve the accuracy of the CNN, which can be implemented 

separately with the CNN or embedded in CNN’s first layers by 

controlling the weights.   

Keywords— AI, CNN, flower classification, hardware 

implementation, feed forward, back propagation. 

I. INTRODUCTION  

Much research in recent years has focused on using various 

Convolutional Neural Network (CNN) for object classification 

[1]. Object classification is the process of distinguishing one 

object from other objects, which provides a systematic view for 

scientists to identify them for later usage and for avoidance of 

misjudgment. CNNs, which mimic human neurons and brains, 

are designed to give the computer learning ability through their 

adjustable internal properties. However, it has still been a huge 

gap from CNN’s intelligence to that of a person, hence 

currently CNN has been used for classification of homogenous 

objects only, such as human faces, animal, or vehicle 

classification [2][3][4]. 

Among those homogenous objects, flower classification 

plays an important role in plant pathology, medicine, and 

agriculture. They have been considered as subjects for many 

CNN research and applications, as they are easy to capture 

images and extract feature. For example, Busra et al. provided 

a CNN model that use image processing techniques to extract 

flower features before classification [5]. Another research from 

Chhaya et al. used transfer learning technique to make use of 

the existed trained CNNs [6]. Despite the fact that many CNNs  

has been built, most of the current CNNs for flower 

classification to the best of our knowledge has been based on 

software only, which has hindered the ability of acceleration as 

well as efficiency optimization of the hardware.  

This paper proposes a fully hardware implementation of a 

CNN for flower classification. Our CNN architecture contains 

16 layers and processes on RGB images of 10 different kinds 

of flower. ReLU is selected as the activation function since its 

match well with hardware implementation, while max pooling 

is selected as the pooling method because of the color-

dependent characteristic of flower [7]. After implementation on 

real hardware, the proposed CNN seemed to perform the 

classification with great accuracy. However, the accuracy of the 

classification does vary in different training conditions 

(different batches and epochs), and the particularly 

characteristic of each kind of flower does affect the result as 

well. Further image pre-processing is also a factor that makes 

an impact on the performance since it affects the feature 

extraction process. Hence, the classification results are 

presented specifically for each scenario and evaluations are 

given for further research later. 

The rest of this paper is organized as follows. Section II 
presents the methodology for construction of the proposed 
CNN. The hardware implementation, which includes structural 
blocks, the state machines, and the hardware operation, is 
described in section III. Section IV contains the experimental 
results, and the conclusion of this study is presented in the last 
section. 

II. METHODOLOGY 

In this section, we provide a systematic view of how the 

proposed CNN is constructed and what makes it work. Basic 

components of the CNN like layers and nodes, as well as 

classification operation are given with specific properties, 

which were carefully considered from different scenarios for 

hardware optimization. 

A. Classification 

An identical CNN contains a number of layers as shown in 

Fig. 1. These layers are divided into 2 groups: feature learning 

and classification. The convolutional and pooling layers are 

responsible for feature learning. Convolutional layers use 

weight to calculate convolution with the image matrix to extract 
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its feature (called feature map), while pooling layers reduces 

that feature map even smaller without losing its characteristic. 

The latter layers are used for classification purpose. Minimized 

feature map from the feature learning is flattened into a vector 

(through flatten layer); then that vector is multiplied with 

another weighted vector to produce a vector that has the same 

size as the number of types of objects required to be classified. 

Finally, that vector is passed through a softmax function [8] to 

produce result in the form of probability. The nearer the result 

to 1, the higher the probability of classification the input object 

into the corresponding type is. 

 
Fig.  1. An identical CNN architecture. 

B. Activation function 

Let us define the input data as X, the weights (internal 

properties) of the CNN as W, and the output of the CNN as Y. 

Y is a vector with a width of n elements; each element 

represents a type of object that the CNN classifies. To get Y, a 

function which includes X and W are performed. The purpose 

of this function is to find the "borders" that separate every 

"region" representing types of objects, and that function is 

called the activation function. Since the CNN’s structure is 

divided into layers, so the activation function can also be 

broken into smaller activation functions for each layer. 

Therefore, those activation functions need to be non-linear, for 

the "borders" of object types are scarcely linear and a 

summation of linear functions is just a bigger linear function 

and CNN’s layers are meaningless then.   

Several activation functions have been provided by other 

previous research [9][10][11]. The most used ones are sigmoid 

and ReLU function; each one has its own pros and cons. These 

two functions are non-linear, which fulfill the first requirement 

of an activation function. While sigmoid function is well-

bounded in the range of [-1;1], ReLU function does not have an 

upper bound in the positive number domain. On the other hand, 

sigmoid function is not easy to compute (contains exponential), 

whereas ReLU calculation is simple even when finding the 

derivatives for the back-propagation process. 

C. Gradient descent 

To determine error or loss of a CNN, loss function is defined 

to show how much precisely the CNN can classify; the smaller 

the loss function, the more accurate the classification is. Based 

on that point, gradient descent is an optimization algorithm for 

finding a local minimum of that loss function of the CNN.  

Gradient descent is based on basic mathematic theorem. The 

sign of the derivative of the function at an arbitrary point can 

tell if it is on the right (larger) or on the left (smaller) of the 

minimum point. Gradually adjusting the test point until it 

reaches the minimum point is how gradient descent works. The 

adjustment step is called learning rate and it determines how 

fast a CNN can learn. 

As gradient descent is used to find local minimum of the loss 

function, the loss function itself also needs to be easy to find 

the derivative. Prior research did provide many loss functions 

and each one of them has its own strength. Hichame et al. did a 

research that compares the most common loss functions [12]: 

weighted cross-entropy loss, Huber loss, and sparseMax loss. 

The weighted cross-entropy loss is strong for awareness of class 

imbalance while the other two are more effective in learning 

speed.  For the proposed CNN, we determined to use weighted 

cross-entropy loss since hardware implementation does 

accelerate the speed and we can focus more on the accuracy 

performance. 

D. Image pre-processing in CNN 

Theoretically, CNN’s weights should be updated after each 

training time (through back-propagation) and can be randomly 

initialized. However, we did notice that if the initialized 

weights are too far from the optimized ones, it takes more time 

for the training process. And there is a chance that two nodes 

from the same layer may extract the same feature from the 

original image, especially at the first layers of the CNN, since 

the weight initialization for them can be nearly the same. This 

results in lower performance as some features may be 

concentrated on too much, while some other ones are not 

extracted. And in the case of flower, which has many endemic 

cases, this means some flower classes give better accuracies 

since the matching feature are extracted, whereas some classes 

give worse results.  

As stated before, the convolutional layers are used for feature 

extraction, using their kernel matrices. Previous research has 

determined some specific kernel matrices for specific purposes 

on the feature extraction [13][14], which can include edge 

detection, blur, sharpening. This study hence provides a way to 

reconfigure the weights (which also mean the kernels) of first 

layers of the CNN to observe the result and then compares to 

the randomly initializing one. Some kernels of the first layers 

are configured for edge detection and sharpening while some 

others are randomly initialized to allow the CNN to detect other 

features. 

III. HARDWARE IMPLEMENTATION 

In this section, we present the specific hardware structure of 

the proposed CNN, which includes the controllers and the 

layers. State machines are described for the control operation 

while structural blocks give a view of the data processing 

between layers.   



A. CNN structure 

To implement the CNN for flower classification in this study, 

we proposed a CNN of 16 layers, which is based on: 

• Input: RGB image of 508x508x3 pixels. 

• Output: A 10x1 vector, each element 

correspondingly represents a flower class. 

• Training set: includes 650 images with 65 images 

for each type of flower, as well as their labels. 

• Test set: includes 150 images with 15 images for 

each type of flower. 

The properties of each layer are shown in Table I as below. 

The input size of the images, which is 508x508x3 is actually 

determined backward from the last pooling layer for integral 

calculation. The original size of the input images does vary, 

since they are separated collected by different means and 

different peoples, so they are cropped to a considerable size 

for uniform input of the proposed CNN. The crop process is 

described in section IV. 

TABLE I.  CNN LAYER PROPERTIES. 

No Layer type Input size Output size 

(feature 

map) 

Number 

of feature 

map 

1 Input None 508x508 3 

2 Convolutional 508x508 504x504 6 

3 Pooling 504x504 252x252 6 

4 Convolutional 252x252 248x248 6 

5 Pooling 248x248 124x124 6 

6 Convolutional 124x124 120x120 12 

7 Pooling 120x120 60x60 12 

8 Convolutional 60x60 56x56 24 

9 Pooling 56x56 28x28 24 

10 Convolutional 28x28 24x24 24 

11 Pooling 24x24 12x12 24 

12 Convolutional 12x12 8x8 24 

13 Pooling 8x8 4x4 24 

14 Flatten 4x4(x24) 384x1 N/A 

15 Fully connected 384x1 100x1 N/A 

16 Output 100x1 10x1 N/A 

B. Classification threads 

The data moving within the CNN can be divided into four 

threads: 

• Initiating weights. 

• Feed forward. 

• Back propagation. 

• Updating weights. 

Three threads including initiating weights, feed forward and 

updating weights are processed from input layer to output layer, 

while back propagation is the only thread that flows the 

opposite way.  

The initiating weights thread is process only once at the start 

of the training set to randomly generate weights for the CNN 

(Gauss distribution) [15]. After this thread is done, feed forward 

is process on input datum to extract its feature and calculate the 

output vector. That vector is included in the loss functions to 

estimate errors, which starts the back propagation thread 

(gradient descent). At last, the updating weights thread is run to 

update the weights based on results of the back propagation 

thread. 

C. Control blocks 

At input layer and output layer, two control blocks are 

defined to control all threads, which we called startpoint and 

endpoint controller. These two blocks contain two state 

machines, which interact with the input and output layer to 

determine when a thread needs to be run, and when to stop it. 

They are also responsible for how training process can be done, 

through controlling given batch and epoch. Their state machine 

graphs are shown in Fig. 2.  

The startpoint controller will switch its state to S0 if it detects 

input datum, then if it is enabled to train or encounters a reset 

signal, it switches to S1 for initiating weight thread. Then, the 

startpoint controller will go to S2 and S3 as the feed forward 

thread process. It then waits for the back propagation thread to 

finish to start the updating weights thread by switching to S5 

state. The cycle then begins with another input datum. 

The endpoint controller is simpler as it just needs to notice 

the startpoint controller about the completion of the feed 

forward, initiating weights and updating weights process so that 

the startpoint controller can continue. 

D. Layers 

Because the CNN in this study processes four internal 

threads, the design of each layer is also divided into four blocks 

for each thread.  

As the convolutional kernel "moves" throughout the input 

matrix, it is simple to use counters to change the location (or 

address) where the kernel starts convoluting after each clock 

tick. The convolution results in one number that is also guided 

by those counters to fit in the output feature map. The design of 

this convolution cell is shown in Fig. 3.  

The full designs of the convolutional layers are presented in 

Fig. 4. Firstly, Fig. 4.a shows the design for the feed forward 

thread, in which a counter is used to select input feature maps, 

choose the corresponding kernel for calculating the 

convolutional result by using the convolutional cell as stated 

above. The results are passed through a ReLU activation 

function and pasted into the output matrix (output feature map). 

Secondly, the design of convolutional layer for back 

propagation thread is in Fig. 4.c, is nearly the same as the design 

for feed forward process, however, the kernel is "flipped", and 

the input matrix is not the feature map but the error matrix. 

Finally, the design for initiating and updating weights are 

presented in Fig. 4.b and 4.d, in which the kernels are generated 

or adjusted. 

The design for pooling layers is much simpler as they do not 

contain the weights. Only designs for feed forward and back 

propagation are required, and they are shown in Fig. 5. 

Subtraction blocks are used to compare the pixel values within 

the a 2x2 region of the feature map, which then results in the 

maximum value. For the back propagation thread, the saved 



signed values from feed forward thread are used to return the 

derivative to its corresponding address through the demuxes. 

IV. RESULTS 

This section gives the classification results of the proposed 

CNN implemented on real hardware. We carefully evaluated 

the results in different scenarios, as well as considered the 

accuracy for each particular flower class, from which we 

summarized the impact of them on the flower classification. 

The image-processing kernels are also taken into account for 

observing theirs influence on the classification. 

A. Datasets 

This paper used the well-known flower dataset of Oxford 

University [16], which contains 17 categories of flower with 

800 images of each class. As stated before, only 10 of these 

flower classes were selected for the proposed CNN model, 

which are Daffodil, Snowdrop, Bluebell, Tiger Lily, Fritillary, 

Sunflower, Daisy, Cowslip, Buttercup, and Windflower.   

However, the images in the dataset were different in size, so 

a function process in Matlab was run to crop these images into 

the size of 508x508 pixels. To maintain the focus of the image 

(avoid flower features being lost), feature extraction technique 

was used to keep the most important region, including the 

petals, pistil, and stamens. From the original image, the 

background is discarded using segmentation techniques [17], 

then the texture and shape features are extracted [18] to 

determine the location of the pistil and stamen (usually at the 

center of the flower), which will then be the center of the 

cropped images. After all the original images are cropped, the 

dataset was ready as uniform input of the CNN. 

For random ordering the images in the dataset into the CNN 

to avoid same flower characteristic being repeated 

consecutively, a random function was calculated to rename the 

name of the original images into different ordering numbers 

using the commonly used pseudo-random generator, linear-

feedback shift register [19].  The images were also divided into 

the training set and test set, which were 650 and 150 images 

respectively, of each class. 

B. Simulation 

Before real hardware implementation, the behavior of the 

CNN was pre-tested through simulation on Questa Sim 10.6c. 

Questa Sim 10.6c is a software that effectively support 

SystemVerilog and provides good assistance for hardware 

testbench as well as other verification processes.  

SystemVerilog randomization feature was used to first-time 

establishment of the CNN’s weights. Input images from the 

datasets were read as hex files using SystemVerilog system task 

$readmemh. The output classification results as well as trained 

weights were stored also as hex files for later evaluation. 

C. Hardware setup 

In order to implement the proposed CNN in real hardware 

model, Virtex-6 FPGA of number XC6VSX475T of Xilinx was 

used for high signal processing capability. Vivado Design Suite 

HLx software was selected to synthesize and implement the 

SystemVerilog code of the CNN. 

The Vivado Design Suite HLx also provided a tool to 

generate a block memory with the initial content as a given 

image [20], so this was how the FPGA board processed through 

the training and test set. Moreover, the output vectors were 

programmed to connect to the FPGA LEDs for a visionary view 

of the classification result. And all weights values were stored 

in the provided block RAMS with patterned addresses for each 

layer’s access. 

 

 
Fig.  2. Controller state machines. 

D. Training and test results 

To evaluate the impact of different scenarios on the 

classification result, we selected several numbers of epoch and 

batch. In Table II, the comparison of accuracy in each scenario 

are shown. We found that as the epoch was increased, the 

classification result became more accurate, however, if the 

epoch is too large, the CNN seemed to be overfitting and it 

became less precise. The same thing happened as the batch 

increased; larger batch increased the accuracy by avoiding 

overfitting (avoid adjusting weights too much) but too large 

batch lowered the efficiency since the CNN had to recalculated 

weights to match too many input images. 

At another aspect, the classification results were also 

different for each class. Flower class with special 

characteristics tended to result in better classification. For 

example, as shown in Table III (at epoch = 3 and batch = 3), 

class 9 (buttercup) had a high accuracy of 97.33, maybe because 

of its plain color and clearly separated petals. Class 6 

(sunflower) also achieved better results, thanks to its easy-



recognizable disk florets at the center. On the other hand, class 

2 (snowdrop) and class 8 (cowslip) had lower accuracy due to 

the same tube-shaped of both flowers and due to the diversly 

camera angles of the training images.  

Finally, the study evaluates the impact of using image-

processing kernel in the CNN’s first layers instead of randomly 

initializing them. The accuracy results can be seen in Table IV. 

It was shown that using the pre-determined kernels did improve 

accuracy for some kinds of flower. The used kernels are for 

edge detection and sharpening so it results best with specific 

texture like fritillary and snowdrop. However, the color features 

of the flowers seemed to be lowered as in the case of 

Windflower and Daffodil. These two flowers have very similar 

shape but different colors, and the CNN in this scenario often 

mistook between these two flowers. It indicates that more 

specific kernels should be added to first layers to be able to 

extract more features. However, some features cannot be easily 

extracted using kernel but using much more complicated image 

processing algorithm. Later study may find a way to combine 

both image pre-processing and CNN for a more efficient way 

to solve the classification problem. 

TABLE II.  CLASSIFICATION ACCURACY AT DIFFERENT EPOCHS AND 

BATCHES. 

Batch Epoch = 1 Epoch = 2 Epoch = 3 Epoch = 5 

1 88.47 89.13 89.20 88.27 

3 90.40 92.13 93.27 91.20 

5 87.20 88.73 90.13 88.40 

TABLE III.  FLOWER CLASSES ACCURACY COMPARISON AT EPOCH=3 AND 

BATCH=3. 

Class Name Characteristics Accuracy 

1 Daffodil Plain color, separated petals 94.67 

2 Snowdrop Tube-shaped, upside-down 83.33 

3 Bluebell Grows in bunches, large pistils 92.00 

4 Tiger Lily Spots, parabolic petals 94.67 

5 Fritillary Spots, bell-shaped, upside-down 93.33 

6 Sunflower Large disk florets, many petals 98.00 

7 Daisy Many petals, plain color 94.67 

8 Cowslip Tube-shaped, grows in bunches 88.00 

9 Buttercup Plain color, separated petals 97.33 

10 Windflower Plain color, separated petals 96.67 

 

 
Fig.  3. Design of the convolutional cell. 

 
Fig.  4. Design for convolutional layers based on the threads. 

 
Fig.  5. Design for max pool layers. 



 

 

TABLE IV.  ACCURACY COMPARISON FOR THE CNN WITH IMAGE-
PROCESSING KERNELS. 

Class Name 

Accuracy of CNN 

with randomly 

initializing weights  

Accuracy of CNN 

with image-

processing kernels 

1 Daffodil 94.67 87.33 

2 Snowdrop 83.33 90.67 

3 Bluebell 92.00 90.33 

4 Tiger Lily 94.67 95.67 

5 Fritillary 93.33 94.33 

6 Sunflower 98.00 90.33 

7 Daisy 94.67 90.33 

8 Cowslip 88.00 92.67 

9 Buttercup 97.33 93.67 

10 Windflower 96.67 91.33 

 

V. CONCLUSION 

Prior work has built many CNN models for flower 
classification, and they performed well in term of accuracy, by 
using different techniques, not only from the artificial 
intelligence field but also from the image processing field. 
However, these CNN models are not hardware-based so they 
may not result in the best efficiency. This study proposed a fully 
hardware-based CNN in which all components and numbers are 
considered for hardware application. We found that the 
implemented model achieved the criteria for accuracy in 
different scenarios. We also noticed that special characteristic of 
each flower class does make an impact on the results, especially 
flower with endemic ones. This indicates that further image 
processing should be done before going into the CNN, or the 
CNN’s weights of the first several layers should be pre-
determined for specific feature extraction. Later study can focus 
on a combination of image processing and CNN to make use of 
both of their advantages. 
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