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Abstract—Hand gestures have been shown to be an efficient
way for human-machine interaction. Existing approaches usually
utilize ambient or head/chest-mounted cameras to capture hand
images. This paper presents a new way to capture hand gestures
using the wrist-worn camera. The wrist-worn device is designed
as a watch with an integrated camera that is much easier and
comfortable to wear in daily life context. We then collect a
dataset of ten hand postures using the designed prototype by
ten subjects. In addition, we deploy state-of-the-art lite CNN
models (YOLO family, Single Shot Detector-SSD) as posture
detectors and classifiers. Experimental results show that with
limited camera angles, the postures are highly distinctive and
easily discriminated with the highest performance of 98.85% and
97.40% in terms of precision and recall, which motivates a wide
range of applications and new research directions for human-
machine interaction, wearables, the Internet of Things (IoT) and
so on.

Index Terms—wrist-worn camera, posture recognition, deep
learning, human-machine interaction

I. INTRODUCTION

Hand gestures are becoming an intuitive and efficient way
for human machine interaction. To this end, machines must
be able to understand hand gestures that human performs. A
whole hand gesture understanding system generally consists of
a sensor that captures human hand gestures, which are recog-
nized by a machine learning algorithm before being converted
to commands for controlling devices/machines. Many existing
works on hand gestures recognition have been conducted for
more than three decades. Most of them utilized visual [1]
or physical sensors [2] for capture hands. Visual sensors
gain more attention than others because they produce rich
information of not only human hand but also objects in
interaction and background context.

Visual sensors are usually mounted in the environment
(third-person view) or on some body parts of human (first-
person view - egocentric vision). Ego-cams (egocentric cam-
eras) is more efficient than ambient cameras as they solely
focus on necessary data. Most of the existing egocams are
mounted on forehead or chest. Such installation is suitable
for specific applications such as rehabilitation evaluation of
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patients, or performance evaluation of sport players. However,
it causes uncomfortability for the wielder. Some commercial
products such as Google Glass show its great usability but it is
unable to integrate other physical sensors in glass-like devices
as all-in-one devices to measure human gestures.

This paper presents a new design of a watch-like wearable
device. This device is mounted on the wrist of the wearer that
can capture both his/her hand and environment. In addition
to the camera, we can easily integrate additional physical
sensors (e.g. accelerometer) for further study. By doing so,
the designed device can be considered as an ordinary object
of human beings, which is more comfortable to wear without
disturbing the human by appearance or by wearing. However,
we will show in this paper that the camera mounted at the
wrist has limited field of view of hand due to its narrow
perspective. As a consequence, the gesture/posture acquired
by such camera will raise new challenges for machine learning
algorithms: the camera looks mostly at the back of the hand
than fingers. We tackle this challenge for the first time by
deploying powerful state-of-the-art deep models YOLO [3].
Various versions of YOLO will be investigated to detect and
classify ten hand postures performed by ten subjects in a
context of human-machine interaction [4], [5], [6]. SSD -
Single Shot Multibox Detector [7] is also implemented to
prove an effectiveness of the proposed study. Experiments
show that although the viewing angle of the camera is limited,
observation of fingers is still good enough to distinguish the
postures.

In summary, the contribution of this paper is three-fold.
First, we design a new hand-held device that is able to integrate
different sensors (camera, accelerometer, etc.) for capturing
images or movement of hand gestures. Second, we collect a
new dataset of ten human postures using wrist-camera. This
dataset will be released for research purposes. Finally, we
evaluate the performance of lastest object detector on our own
dataset - YOLO object detector family. In the remainder of this
paper, we will present related works in section II. In section
III, we describe our designed prototype and data collection.
YOLO models will be re-visited in section IV. Experiments
and conclusions are presented in section V and VI respectively.



II. RELATED WORKS

Hand gesture recognition from visual sensors has been
widely studied in the literature. Many methods have been
proposed for static hand posture and dynamic hand gestures
from ambient or wearable camera [8], [9], [10]. However, the
topic of recognition from wrist-worn cameras only emerged
recently and a limited number of works initiate the design of
prototypes and apply existing machine learning techniques for
gestures recognition. In this section, we will only survey the
most relevant works on the design of a hand-mounted camera
and methods for static hand posture recognition.

Park et al. proposed a prototype that embeds a camera
in a wirst-worn device [11]. A set of Korean alphabet has
been collected. Captured images are segmented using color
space. Then extracted hand shape is utilized for recognition.
The recognition rates range from 63% to 91% depending on
adaptation techniques.

Chen et al. designed an RGB camera embedded in a wrist-
worn device for controlling robot arm [12]. Ten hand postures
(from 0 to 9) are collected with 10 subjects, leading to 1000
images in the dataset. The authors utilized hand segmentation
and template matching techniques for posture recognition
obtained 99.38% of accuracy.

In [13], the authors designed a hand device that embeds a
Leap Motion imaging sensor. There are 11 static hand poses
consisting of 10 numbers in the American Sign Language,
plus a relaxed pose. Besides, they collect also 6 dynamic
hand gestures. For recognition of hand postures, the authors
employed Inception-v1 model. The highest recognition rate is
about 89.4% with real-time individual test.

Wu et al. used a wide-angle RGB camera worn on a watch
for collecting and estimating hand poses [14]. Sia subjects
participated to perform 10 postures (0-9 of ASL) and 5 dy-
namic hand gestures as the work in [13]. Different recognition
methods have been evaluated: nearest neighbor (44.6%), direct
regression (71.2%). The method by [13] obtained 88.6% on
this dataset while [14] using DosalNet with an additional MLP
obtained 91.4%.

Yamoto et al. [15] proposed a hand gesture interaction
method using a low-resolution infrared image sensor worn
on the inner wrist. They attach the sensor to the strap of a
wrist-worn device, on the palmar side, and apply machine-
learning techniques to recognize the gestures made by the
opposite hand. Five right-handed male volunteers participated
in collecting the data of 6 static postures and 7 dynamic
hand gestures in an application of map interface. The accuracy
obtained on this dataset ranges from 64.69% to 99.61%.

In summary, existing works on recognition of hand postures
using wrist-worn camera remain very limited and countable on
the fingers. The collected datasets are not published yet. Most
methods utilized conventional machine learning techniques
such as K-nearest neighbor or regression, template matching.
Some of them employed baseline deep models such as Incep-
tion which can be quite complex for a real-time application.
In this work, we will investigate different lite versions of

real-time object detector YOLO as well as one example of
SSD (mobilenetv2-SSD) for real-time application of human-
machine interaction. In the following, we will present in detail
our designed prototype and experimental framework.

III. DESIGN A PROTOTYPE OF WRIST-WORN CAMERA AND
DATA COLLECTION

A. Design the prototype
We design a wrist-worn device which composes of smart-

watch-like hand band that helps to mount a camera or other
sensors. We use a low-cost conventional RGB camera for the
purpose of ordinary usage. The camera model is IMX219-160
which gives the highest resolution of 3280 × 2464 at 15 fps,
side field of view of camera is 160o. At 1280×720 resolution
options, the capture rate may reach 90 fps. The device is worn
on the backside of the user’s right wrist and the camera will
capture images of the hand back. We utilize an embedded
computer (i.e. Jetson Nano) to receive images from camera
through USB port. Figure 1 illustrates our designed prototype.
Comparing to the existing surveyed prototypes in Section II,
ours gives a possibility to integrate other multimodal sensors
such as accelerometer and gyroscope. We also exploit a low-
cost camera then the image quality will be more challenging
in the step of hand segmentation.

Fig. 1. Illustration of the designed prototype.

B. Data collection and annotation
We conduct our first pilot with a conventional posture set

(numbers from 0 to 9 in ASL) as existing works. On the
one hand, that gives us some ideas about the performance
for comparison. On the other hand, this posture set can
be used to identify appliances to be controlled in human-
machine interaction. Templates of the postures are presented
in Figure 2.

We invite ten volunteers (five men and five women) to
participate in data collection in several environments (home,
laboratory, a room in dormitory) Each subject is guided to
wear the designed device on his/her wrist and to perform the
gestures. We ask them to perform 10 pre-defined postures
as they want to control the home appliance in their way as
naturally as possible (Fig.3). Each subject performs a posture
several times. Each time, he/she changes his/her standing
location, the orientation of the hand (camera), and the device
to be controlled so that we can capture a dataset with variation
in background, orientation, and position.



Fig. 2. Set of 10 postures corresponding to 10 numbers (0-9) in American
Sign Language.

Fig. 3. llustration of a subject wearing the designed device in home
environment for data acquisition.

Images are stored in a wearable embedded device (Jetson
Nano). Finally, the collected dataset consists of 762 images of
10 postures with different backgrounds, lighting and orienta-
tion of hands. Figure 4 illustrates 10 postures recorded by a
subject. Figure 5 shows variation in posture implementation
(the number 3) by different subjects under different lighting
condition and background.

Fig. 4. Examples of 10 hand postures in the collected dataset

Fig. 5. Variation in posture implementation, lighting condition and back-
ground.

The dataset is annotated using LabelImg tool. One ad-
vantage of a wrist-worn sensor is that the hand is the only
object that takes a large portion of the image. On the one
side, this mitigates the annotation. On the other side, it could
facilitate detection algorithm. However, wrist-worn sensor has
drawbacks too. As seen in Figure 5, the camera sees mostly the
back of hand palm, hence, it is difficult to observe clearly the
fingers, leading to misleading posture recognition. The total
time to collect and label all data is approximately 2 weeks.
Once labelled, the images are resized to 416416 to fit the grid
stride of the architectures (multiples of 32). Dataset can be
found online at https://github.com/inspiros/mica handwrist.

IV. HAND POSTURE DETECTION AND CLASSICIATION

In this paper, we investigate various versions of YOLO that
play the role of detection and classification. Each posture type
can be considered as an object class. YOLO has been known
to be the best real-time object detector that balances the trade-
off between computational time and accuracy. Our objective
is to find out the most suitable model in terms of accuracy,
computational cost and memory usage. The selected model can
be deployed in an embedded computer such as Pi or Jetson
Nano for further applications.

A. Proposed framework

As aforementioned, we investigate different lite models of
YOLO. Our proposed framework is illustrated in Fig. 6. The
framework consists of two phases: training phase and inference
phase.
• Training phase: Images of the hand will be captured and

transferred to a server for centralized processing. We first
annotate image by image using LabelImg tool. Annotated
data will be stored posture by posture for training the
models.

• Testing phase: Images of the hand are captured and go
through the inference phase using the trained models.
Posture prediction will be deriveed and IoU (Intersection
over Union Index) is computed to determine whether it
is a true positive.

B. YOLO re-visiting

YOLO detects objects in images as a single regression
problem. The output of YOLO contains bounding box co-
ordinates and class probabilities from image pixels. As one
of the cutting-edge detectors, YOLO has many advantages
over the others. Introduced in 2016 [3], until now, many
modifications of YOLO and its variations have been proposed
such as YOLOv2, YOLOv3, YOLOv4, and the latest version
YOLOv5 was released in May 2020. To be able to run on
non-GPU computers or miniatured devices, YOLOv3 tiny,
YOLOv4 tiny, YOLOv5s were subsequently developed. With
the same purpose, we will investigate lite versions of YOLO
to finally deploy one of the models on a low-powered device.

The basic idea of the original YOLO is to predict the
bounding boxes of objects and their class probabilities in one
stage. First, the input image is divided into a S×S grid. Then



Fig. 6. The framework for hand posture recognition from handwrist camera in our study.

B bounding boxes are defined in every grid cell, each with a
confidence score. The score is defined as:

Confidence Score = Pr(Object ) ∗ IoU truth
pred (1)

where Pr(Object ) is the probability that there is an object
inside a grid cell, IoU is the intersection over union, repre-
sents a fraction between 0 and 1. While the bounding boxes
are determined, each grid cell predicts C conditional class
probabilities simultaneously:

Pr (Classi | Object) ∗ Pr(Object) ∗ IoU truth
pred

=Pr (Classi) ∗ IoU truth
pred

(2)

The loss function is computed according to [3]:
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The architecture of YOLO contains 24 convolutional layers
and 2 fully connected layers. YOLO is later improved with
different versions to minimize localization errors and increase
mAP (Mean Average Precision).

1) YOLOv3-tiny: YOLOv3-tiny was introduced in [4] with
a better architecture than its previous versions where the
feature extractor used was a hybrid of YOLOv2, Darknet-53
(53 convolutional layers), and Residual networks (ResNet).
The model used Darknet-53 which originally has the 53-
layer network for training feature extractor. After that, 53
more layers were stacked for the detection head for training
object detector, making YOLOv3 a total of 106 layers fully
convolutional underlying architecture. Thanks to the residual
blocks of ResNet, overlaying layers will not degrade network
performance. The most notable feature of YOLOv3 is that
it makes detections at 3 different scales to be able to detect
multi-scale objects.

2) YOLOv4-tiny: The YOLOv4’s authors performed a se-
ries of experiments with many advanced innovation ideas for
each part of the architecture [5]. They chose CSP Darknet53
as being the most optimal model. Before forwarding to feature
aggregation architecture in the neck, the output feature maps
of the CSPDarknet53 backbone were sent to an additional
block (Spatial Pyramid Pooling block) to increase the receptive
field and separate out the most important features. The FPN
architecture implemented a top-down path to transfer the
semantical features and then concatenate them to fine-grained
features for predicting small objects in the large-scale detector.
YOLOV4 improvements are referred to by the terms ”Bag
of Freebies” and ”Bag of Specials”. YOLOv4-tiny is one
of the lightweight YOLO series that aims at deployment on
embedded devices. Compared with YOLOv3-tiny, the latter
uses CSPBlock network to extract features without using the
conditional convolution networks and introduces the complete
intersection over union to select bounding boxes.

3) YOLOv5-s: A different research team applied various
state-of-the-art innovations to create the most recent ver-



sion YOLOv5 [6]. YOLOv5 architecture is very similar to
YOLOv4 with micro modifications. However, it possesses
engineering advantages. The actively updated codebase is
written in Python instead of C language for ease of installa-
tion, development, and integration on IoT devices. YOLOv5’s
authors provided 4 versions with increasing computational
complexity and potency, namely YOLOv5-s, YOLOv5-m,
YOLOv5-l, and YOLOv5-x. We employ the first one because
it is the minimal architecture both in depth and in width. In
summary, YOLOv5 consists of CSPDarknet53 as backbone,
SPP additional module, PANet path-aggregation neck, and
YOLOv3-styled multi-scales anchored heads.

4) Training YOLO models: YOLO models have become
prevalent on large-scale datasets (Pascal VOC or COCO) that
consists of a wide range of different object classes, but without
hand posture classes as in our context. Nevertheless, we can
still take advantage of transfer learning. For all considered
YOLO models, we continue from pre-trained weights (that
were adapted on COCO dataset) and fine-tune them with our
training data. We use Adam optimizer, initial learning rate is
0.0001, batch size is 16, number of epochs is 300. We train
the models on NVIDIA GeForce GTX 1080 TI GPU.

V. EXPERIMENT

A. Experimental setup and Evaluation metrics

The dataset is strategically split into train and test parts
with proportions of 80% (609 images) and 20% (153 images)
respectively, such that the class-wise demography is best
retained in both subsets.

We report the Precision (P), Recall (R), and F1 scores, then
compute the Confusion Matrix for each evaluated model. The
average Precision/Recall/F1-Confidence, as well as Precision-
Recall curves, are plotted for comparison. In addition, we
also report the three widely used object detection metrics
mAP@0.5, mAP@0.75, and mAP@[0.5:0.05:0.95].

B. Experimental results

Table I reports the outputs of our assessments comparing a
series of lite YOLO architectures and MobileNetv2-SSDLite
[7]. Throughout the experiments, IoU threshold and NMS
threshold are both set to 0.5 while the empirically selected
confidence threshold is 0.4. In this setup, both models scored
very high with Precision, Recall, and F1 scores generally
above 95%. Overall, the finetuned YOLOv4 only slightly
outperforms other lightweight models for modest margins,
with scores of P=98.85%, R=97.23%, F1=97.92%.

We further plotted the P, R, F1, and PR curves for the lite
YOLO family in Figure 7. They both follow the conventional
trends and fabricate near-perfect PR curves despite consid-
erably smaller sizes. The colorized areas indicate the class-
wise variance, which is synonymous with how consistent the
performance of each model is.

In terms of mAP, both models perform well at lower criteria
of IoU between predictions and ground truths (mAP@0.5).
However, as we increase the IoU threshold, there is generally
a gradual decrease especially beyond 0.75. The trend is less
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Fig. 7. Comparison of P-R curve, and P/R/F1-confidence curves of three eval-
uated lite models (denoted by color of the line). The transparent surrounding
areas indicate the class-wise lower and upper bound statistics of models with
corresponding color.

intense in YOLOv5-s as compared to previous versions with its
mAP@[0.5:0.05:0.95] remains at 92.62%, keeping large per-
formance gaps to its predecessors (YOLOv3-tiny at 74.02%,
YOLOv4-tiny at 71.34%). Comparing to existing performance
on the similar datasets [12], [13], [14], YOLO tiny models are
able to achieve competitive or even higher results.
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Fig. 8. Confusion matrices of three evaluated lite models. BFP and BFN
stands for Background False Positive and Background False Negative, the
lower the better.

Figure 8 shows the confusion matrices of each model
with the aforementioned hyper-parameters. It is noted that in
object detection task, the Background FP column indicates
false detections over background, whereas Background FN
row indicates missed detections. The values of them are only
relative and should be zero for a perfect model. We can see that
there are not many BFNs because of the ubiquitous presence



TABLE I
COMPARISON OF EXPERIMENTAL RESULTS OF MOBLIENETV2-SSDLITE, YOLOV3-TINY, YOLOV4-TINY AND YOLOV5-S.

Model P R F1 mAP@0.5 mAP@0.75 mAP@[0.5:0.05:0.95] Size (#params) GFLOPs
MobileNetv2-SSDLite 98.32 96.65 97.35 98.66 98.66 91.07 4.3M N/A

YOLOv3-tiny 94.75 93.99 93.90 98.74 95.51 74.02 8.7M 5.5
YOLOv4-tiny 97.93 94.93 96.21 99.08 98.78 71.34 5.9M 6.8

YOLOv4 98.85 97.23 97.92 98.61 79.64 68.51 27.6M 52
YOLOv5-s 98.16 97.40 97.70 96.92 96.92 92.62 1.7M 4.2

of the hand in front of the camera in our specific problem.
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Models
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Fig. 9. Some example outputs of YOLOv3-tiny, YOLOv4-tiny, and YOLOv5-
s with confidence threshold and NMS threshold set to 0.4 and 0.5 respectively.

Some example output bounding boxes are visualized in
Figure 9. Generally, YOLOv5-s outputs more fitting bound-
ing boxes covering the hand, which explains its outstanding
mAP@[0.5:0.05:0.95]. The results promote the technical con-
venience and practicality of wrist-worn cameras for hand pos-
ture detection and recognition. As shown in our experiments,
even small object detectors, which are dedicated to run on edge
devices, can easily achieve sustainable performance with only
partial differences in terms of precision of bounding boxes’
coordinates regression (filtered by the IoU threshold).

VI. CONCLUSIONS

This paper presented a pilot study on hand posture recog-
nition using a wrist-worn camera. We successfully designed
and prototyped a wrist device that is able to capture images
of human hand gestures. We collected a set of ten postures
by 10 volunteers with the prototyped device in the context of
home appliance control. We then evaluated the performance
of state-of-the-art deep learning models YOLO and SSD as
posture detectors and classifiers over our self-collected dataset.
Preliminary results demonstrate that although the limitation of
camera angles, fingers’ configurations are highly distinctive
for nearly perfectly recognizing the postures. This pilot gives
the first original dataset of hand posture captured by wrist-
worn camera and show the feasibility to recognize them, which
are highly promising for human-machine interaction as well
as home appliance controlling applications. In the future, we
will evaluate the method with continuous video streams in
combination with some multimodal sensors like accelerometer

or gyroscope, conduct the dynamic hand gesture recognition
and deploy the application of home appliance control.
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