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Abstract— Versatile Video Coding (VVC) has been 

standardization in July 2020. Compared to previous High 

Efficiency Video Coding (HEVC) standard, VVC saves up to 

50% bitrate for equal perceptual video quality. To reach this 

efficiency, Joint Video Experts Team (JVET) has introduced a 

number of improvement techniques to VVC model. As a result, 

the complexity of VVC encoding also greatly increases. One of 

the new techniques affects to the growing of complexity is the 

quad-tree nested multi-type tree (QTMT) including binary split 

and ternary splits, which lead to a block in VVC with various 

shapes in both square and rectangle. Based on the 

aforementioned information we propose in this paper a new deep 

learning based fast QTMT method. We use a learned 

convolutional neural network (CNN) model namely Early-

Terminated Hierarchical CNN to predict the coding unit map 

and then fed into the VVC encoder to early terminate the block 

partitioning process. Experimental results show that the 

proposed method can save 30.29% encoding time with a 

negligible BD-Rate increase.   
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I. INTRODUCTION 

Nowadays, digital videos have been covering a very wide 
range of applications from multimedia messaging, video 
telephony, video conferencing and display in high resolution 
formats like high definition (HD), Full HD, 2K, 4K, and 360-
degree. The progression of video formats and resolutions 
requires a new video coding standard with better performance 
compared with previous standards. However, to achieve the 
high performance, the state-of-the-art video codec makes 
computational complexity greatly increase.  

Block partitioning is one of the most important techniques 
in video coding in which the video picture is adaptively 
divided into smaller blocks for encoding. In H.264/AVC [1], 
each of frames is partitioned into macro-blocks (MB) with a 
size of 16×16 Luma samples while HEVC [2] introduces a new 
technique called quad-tree partitioning (QT). In QT, each 
frame is split into coding tree units (CTUs) with a size of 
64×64. After that, CTUs are divided into smaller coding unit 
(CUs) of different sizes. CUs in HEVC are always square and 
its size can be from 8x8 Luma samples up to the largest coding 
units (LCUs). 

In the newest video coding standard, namely Versatile 
Video Coding [3], Joint Video Exploration Team (JVET) also 
applies block-based hybrid mechanism to get a flexible 
hierarchy unit representation. To get better coding efficient, 

VVC has been adopted many new coding tools, such as quad-
tree nested multi-type tree (QTMT) in the block partitioning 
process and the largest supported size is up to 128x128. CUs in 
VVC can be partition into smaller square or rectangle block 
using quad-tree, binary split or ternary split as shown in Fig. 1. 

 

Fig.1. An example of QTMT in VVC  

Because of using QTMT, the complexity has also increased 
greatly. In the newest document, JVET reports that 
computational complexity of VVC increase more than 30 times 
compared to  HEVC [13]. Therefore, it is necessary to reduce 
the processing time of the codec, especially at the encoder side.  

Artificial intelligent, notably the deep learning technique 
has recently been used in a wide range of vision and image 
processing applications [10]. Following this direction, Mai Xu 
et al. [6] introduced a deep learning based method to reduce 
complexity of the HEVC encoder. Inspired from this work, we 
propose a combining network to predict the CU partition for 
the inter prediction mode in VVC encoder. In which, deep 
early-terminated hierarchical convolutional neural network 
(ETH-CNN) structure is developed to learn the hierarchical CU 
partition map for predicting the CU partition of intra-mode 
VVC, and early-terminated hierarchical long and short-term 
memory network (ETH-LSTM) is proposed to learn the 
temporal correlation of the CU partition. In this paper, we 
introduced a deep learning approach to reduce the complexity 
of the CU partition in VVC standard by applying ETH-CNN.  

To demonstrate the efficiency of proposed method, the rest 
of this paper is organized as follows. Section II briefly 
introduces the VVC block partitioning and related fast  block 
partitioning algorithms. Section III presents the proposed ETH-
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CNN model while Section IV discusses the experimental 
results. Finally, Section V gives the conclusion of this paper. 

II. BACKGROUND AND RELATED WORKS 

A. Block partitioning in VVC  

In this section, we review the CU partition in VVC 
standard, which have many different from that in previous 
video coding standard. Fig.2 shows an image region which is 
partitioned and encoded by VVC (left) and HEVC (right). We 
can observe that VVC supports both square and rectangle 
partition shapes while block in HEVC is only square shape. 

  

Fig.2. Block partitioning in H.266/VVC (left) and H.265/HEVC (right) 

In HEVC [2], input frames are divided into the basic 
coding structure called coding tree unit – CTU, with the 
maximum allowed luma block size is 64×64. After that, CTU 
with size of 2N×2N is recursively partition into smaller coding 
unit – CU via the quad-tree. By using quad-tree structure, CTU 
and CU are split into four sub-CU with size of N×N [9].  

Inspired from the HEVC structure, the raw image in VVC 
is divided into a sequence of CTUs with the same concept in 
HEVC [7, 8]. However, VVC allows the maximum size of the 
Luma block in a CTU is 128×128.  

Firstly, in depth = 0, if CTU size is larger than maximum 
allowed binary and ternary tree size, only quad-tree structure is 
applied to partition CTU into four smaller CU with size of 
64×64. After that, while depth >= 1, Quad-tree with nested 
multi-type tree (QTMT) containing binary and ternary splits is 
used to partition current block into sub blocks. Fig. 3 shows 
four splitting types of multi-type tree structure. A CU can be 
split into sub CUs by vertical binary splitting 
(SPLIT_BT_VER), horizontal binary splitting 
(SPLIT_BT_HOR), vertical ternary splitting 
(SPLIT_TT_VER), and horizontal ternary splitting 
(SPLIT_TT_HOR) mode. In most case, if the width or height 
of the color component of the CU is smaller than maximum 
supported transform length,  CU, PU and TU have the same 
block shape and size in the QTMT coding block structure. In 
case that the width or height of the coding block is larger than 
the maximum transform width or height, the coding block is 
automatically split in vertical and/or horizontal direction to 
meet the supported transform size. 

If a part of the current CU exceeds the bottom or right 
picture boundary, it is forced to be split until all samples of 
every coded CU are not located outside the picture boundaries. 
For example, when a portion of the current CU exceeds both 
the bottom and the right picture boundaries, it is forced to be 
split with QT split mode if the sub-CU size is larger than the 

minimum QT size, otherwise, the block is forced to be split 
with SPLIT_BT_HOR mode. 

 

Fig. 3. Binary and Ternary Split in H.266/VVC 

Due to the use of multi-type tree, there are some different 
splitting patterns give the same results of coding block 
structure. Therefore, in VVC, some of special splitting patterns 
are not allowed. Fig. 4 describes one of the special cases. 
Assume that current CU is a square shape, the encoder will use 
SPLIT_BT_VER mode in both current CU and sub-CUs, 
instead of use SPLIT_TT_VER and use SPLIT_BT_VER for 
the central sub-CU in next step. 

 

Fig. 4. A special case of multi-type tree 

B. Fast block partitioning algorithm in VVC 

In general video codec, the encoder will evaluate every 
possible partition structure, and choose the best partition 
structure with the minimum RDCost, computed in equation (1). 

𝑅𝐷𝐶𝑜𝑠𝑡 = 𝐷 + 𝜆 × 𝑅 (1) 

 Where, D is the difference between original and the 
reconstructed information. R represents the bitrate which is 
needed to encode the CU and λ is a Lagrange multiplier. 

 Targeting the VVC complexity reduction, Zhang et al. 
proposed in [4] a texture based fast CU partitioning method. 
This research includes two algorithms: i) early terminate the 
splitting process based on texture energy and ii) using texture 
direction to decide the splitting mode of CUs. In [5], Jin et al. 
introduced a novel fast QTBT partition decision method based 
on Convolutional Neural Network (CNN). First, the current 
frame is divided into a set of 32×32 blocks and CNN model 
will predict the minimum and maximum partition depth for 
QTBT partition. In the depth 0, if the classification result is 
‘‘0’’ for anyone patches within CTU, it means that the CTU is 
smooth and no longer split. Otherwise, divided it into smaller 
block. In step 2, the current depth is 1, if all patches of the 
current CU are smooth and have label ‘‘0’’ or ‘‘1’’, processor 
calculates RD cost of the 64×64, and then calculates RDCost of 
each sub-CUs in next step. If the classification results of CNN 
are bigger than “1”, it means that current 64x64 CU has some 
detail texture, so that processor directly divides it into four sub-
CUs using quad-tree partition without calculating RD cost. In 
step 3, the current size of block is 32×32, the encoder will 
calculate RD cost for each partition depth within the candidate 
depth range, and finally determine the optimal QTBT partition 
structure through RDO process. 

SPLIT_TT_HORSPLIT_TT_VERSPLIT_BT_VER SPLIT_BT_HOR



III. PROPOSED METHOD 

A. Fast QTMT structure 

Because of using quad-tree nested multi type tree, the 
existing fast algorithms for block partitioning proposed for 
HEVC cannot be directly and fully implemented in VVC. So 
that, we only applied ETH-CNN to square block and quad-tree 
structure to reduce complexity of the intra mode in VVC. 

 

Fig. 5. Proposed Method 

 

Fig. 5 specifically described our proposed method. The 
input of the process is a CU. The algorithm flow is listed as 
follows:  

1) If the size of CU is 128×128, it will be applied quad-tree 
to split into 4 square sub-CUs.  

2) If the current CU is a square block and the size of width 
and height are available, the ETH-CNN model predicts the 
probability (PsplitQT) of splitting current CU by quad-tree.  

3) The encoder compares this probability with a threshold 
(𝛼𝑙= 0.5) and decides whether or not the current CU use quad-
tree structure to split into sub-CUs. If this probability larger 
than threshold, the current CU will be split by quad-tree nested 
multi type tree and if this probability smaller than threshold, 
current CU is split into 2 or 3 sub-CUs by using multi type 
tree. 

4) Return to step 1 to process the next CU or sub-CU. 

B. ETH - CNN model 

ETH-CNN was originally introduced by Mai Xu et al. [6], 
to reduce the computational complexity of the prior HEVC 
standard. In this method, ETH-CNN is used for learning to 
predicting the CU partition of intra-mode instead of using 
conventional brute-force RDO search. According to the 
mechanism of CU partitioning, the ETH-CNN structure is 
divided into three branches. ETH-CNN has an input as CTU 
which is divided into sub-CU with size of 64×64, 
32×32,16×16, corresponding to all predictions of HCPM at 
three levels (for more information about HCPM, we suggest 
read carefully [6]). Then, the data is passed through the layers 
to be processed and the result is the probability of the split of 
that CU. 

Inspired from this work, we propose to early select the CU 
size and partition following a trained CNN model as shown in 
Fig. 5. In this structure, three parallel branches of ETH-CNN 
structure will represent the three levels of CU depth, 
respectively. The level of CU depth in each branch will be 
changed from [6], specifically B1 corresponding to depth 1, B2 
corresponding to depth 2 and B3 corresponding to depth 3. The 
input of these branches is the Y channel of CU size 64×64 
(denoted by U) taken from the original CU size 64×64 (depth 
level is 1). The output of ETH-CNN is saved as a hierarchical 
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Fig. 6. ETH-CNN structure 



CU partition map (HCPM) which as same as the quad-tree 
structure in HEVC and has three levels from 1 to 3 
corresponding to CU size 64×64, 32×32 and 16×16.  

Each branches containing two Preprocessing layers, three 
Convolution layers, one Concatenating layers and three Fully 
Connected layers. In which, the 3 Fully Connected layers on 
branch 2 and branch 3 of ETH-CNN can be skip if the one in 
upper branch make a prediction that the CU will not be split. 

Since the input of three branches is Y channel of CU at 
depth 1, this data is firstly normalized its size to fit with the CU 
depth of each branch: 64×64 for branch B1, 32×32 for branch 
B2 and 16×16 for branch B3. The normalized data is the input 
of 2 Preprocessing layers and in which, the raw data is 
processed by mean removal and down-sampling to make input 
data on each branch become more relevant to that branch's 
output requirements.  

After that, in each branch, the corresponding preprocessed 
data flow through three Convolutional layers to extract feature. 
In this paper, we used the same parameter as [6], that is kernel 
sizes of convolution layer on 3 branches are same with 4×4 
kernels (16 filters) for first layer, 2×2 kernels (24 filters) for 
second layer and 2×2 (32 filters) for final layer. 

Then, the features extracted from Convolutional layers are 
concatenated together and then flattened into a vector a in 
concatenating layer. 

Finally, all features contained in vector a will be processed 
on three branches corresponding to 3 levels of HCPM. In each 
branch, the feature extracted flow through 3 fully connected 
layers, containing 2 hidden layers and 1 output layer to predict 

the level of quad-tree structure. The feature vectors {𝐟1−𝑙}𝑙=1
3  

are generated by 2 hidden layers. So that the outputs in B1, B2 
and B3 have 1, 4 and 16 elements, serving as the predicted 
binary labels of quad-tree structure at the three levels (�̂�1(𝐔) in 

1x1, {�̂�2(𝐔𝑖)}𝑖=1
4  in 2x2 and {�̂�3(𝐔𝑖,𝑗)}𝑖,𝑗=1

4
 in 4x4). Besides, 

the feature vectors {𝐟1−𝑙}𝑙=1
3  are combined with external feature 

to exploit the QP information, so that ETH-CNN can adaptive 
to various QPs in predicting quad-tree structure. Especially, if 
the branch B1 predicts that current CU is not split, the B2 and 
B3 will be skipped, of if the branch B2 predicts that current CU 
is not split, B3 will be skipped. Therefore, the complexity of 
ETH-CNN is reduced. 

After collecting the predicted information for quad-tree 

structure, (the binary labels �̂�1(𝐔) , �̂�2(𝐔𝑖)  và �̂�3(𝐔𝑖,𝑗) ), 

probability that the label is 1 is calculated, and then compared 
with a threshold (𝛼𝑙) to decide that current CU is split or not. 
Since the bi-threshold used in [6] 𝛼𝑙  and �̅�𝑙  all set equal 0.5, 
we will use only threshold 𝛼𝑙= 0.5 in this paper. 

IV. EXPRERIMENT AND PERFORMANCE EVALUATION 

A. Dataset and test condition 

The proposed method is evaluated on 9 standard test 
sequences in Table 1 with different setting the Quantization 
Parameters (QPs) to 22, 27, 32 and 37 under All-Intra main 
configuration, respectively. 

To obtain the ETH-CNN model, we adopted a similar 
training set from [14] where 2000 image were compressed at 
four QPs.  

To show the complexity reduction performance, the ∆T is 
defined by the following equation (2): 

∆T=
𝑇𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑−𝑇𝑉𝑉𝐶

𝑇𝑉𝑉𝐶
× 100% (2) 

 where ∆T represents the run time saving by using proposed 
method, TVVC represents the total run time of the VTM-12.1 
[11], TProposed represents the total run time of the proposed 
method. 

BDBR parameter are used to represent the average bit rate 
differences [12]. 

TABLE I.  THE DETAILS OF TEST SEQUENCES 

Sequence 
Spatial 

Resolution 

Number of 

frames 

Frame 

Rate 
Content type 

PeopleOnStreet  2560×1600 150 30 Hz Surveillance 

Traffic  2560×1600 150 30 Hz Surveillance 

Kimono  1920×1080 240 24 Hz Natural 

ParkScene  1920×1080 240 24 Hz Natural 

FourPeople  1280×720 600 60 Hz Conference 

KristenAndSara  1280×720 600 60 Hz Conference 

Johnny  1280×720 600 60 Hz Conference 

SlideShow 1280×720 500 20 Hz Screen content 

SlideEditting  1280×720 300 30 Hz Screen content 

B. Results and discussion 

The experiment results of time saving, BDBR of all test 
sequence are shown in Table II while Fig.7 illustrates RD 
performance of the proposed method. 

TABLE II.  ENCODING TIME SAVING 

Sequence 
Time Saving (∆T %) BDBR 

(%) QP 22 QP 27 QP 32 QP 37 

PeopleOnStreet  -33.05 -32.21 -30.34 -24.55 1.20 

Traffic  -30.81 -29.91 -29.49 -23.33 0.88 

Kimono  -34.17 -28.15 -18.74 -13.05 0.21 

ParkScene  -35.51 -43.80 -39.83 -31.54 0.71 

FourPeople  -32.47 -34.48 -35.64 -33.01 1.17 

KristenAndSara  -28.69 -22.00 -19.78 -12.65 1.92 

Johnny  -36.14 -34.59 -33.37 -30.52 1.15 

SlideShow -32.28 -33.48 -32.57 -37.01 3.0 

SlideEditting  -19.79 -24.08 -40.24 -39.01 2.28 

Average -31.43 -31.41 -31.11 -27.19 1.39 

 

From the obtained results in Table II and Fig.7, some 
conclusions can be given as:  

• The proposed method provides a low complexity 
solution for the state-of-the-art video coding standard. 



• The proposed method can reduce encoding complexity 
for high resolution video using H.266/VVC encoder. 

• The total encoding time can be cut by proposed method 
for All-Intra configuration ranges from -12.65% to -
40.24%, with an average of -30.29%. Meanwhile, the 
BDBR is from 0.21% to 3.0%, with 1.39% on average.  

• The proposed method can be applied to a variety of 
video content (i.e. natural, surveillance, conference, 
screen content). 

• Quantization parameter does not affect the encoding 
time saving. 

  

Fig. 7. RD performance of sequence Traffic and Kimono 

 The CU structure partition of the proposed algorithm is 
visualized in Fig. 8. The figures are cropped from the first 
frame of sequence KristenAndSara under QP 37. We can 
observe that the CU structure and video quality of the proposed 
algorithm is very similar to the default VTM encoder. 

     

Fig. 8. The CU structure partition result of the default VTM (left) and proposed 
method (right) 

V. CONCLUSIONS 

In this paper, a fast QTMT method is proposed for VVC 
intra coding using Early-Terminated Hierarchical CNN model. 
The experiment results show that the proposed algorithm can 
achieve 30.29% time saving on average while paying for only 
1.39% BD-rate increase over the VVC standard test sequences. 
In the future, we plan to adapt this model for binary and ternary 
split process. 
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