

Fast QTMT for H.266/VVC Intra Prediction using

Early-Terminated Hierarchical CNN model

Xiem HoangVan, Sang NguyenQuang, Minh DinhBao, Minh DoNgoc, Dinh Trieu Duong

 Faculty of Electronics and Telecommunications, University of Engineering and Technology,

Vietnam National University, Hanoi

xiemhoang@vnu.edu.vn, ngsang998@gmail.com, minhdinh@vnu.edu.vn, ngocminhc2nc1@gmail.com, duongdt@vnu.edu.vn

Abstract— Versatile Video Coding (VVC) has been

standardization in July 2020. Compared to previous High

Efficiency Video Coding (HEVC) standard, VVC saves up to

50% bitrate for equal perceptual video quality. To reach this

efficiency, Joint Video Experts Team (JVET) has introduced a

number of improvement techniques to VVC model. As a result,

the complexity of VVC encoding also greatly increases. One of

the new techniques affects to the growing of complexity is the

quad-tree nested multi-type tree (QTMT) including binary split

and ternary splits, which lead to a block in VVC with various

shapes in both square and rectangle. Based on the

aforementioned information we propose in this paper a new deep

learning based fast QTMT method. We use a learned

convolutional neural network (CNN) model namely Early-

Terminated Hierarchical CNN to predict the coding unit map

and then fed into the VVC encoder to early terminate the block

partitioning process. Experimental results show that the

proposed method can save 30.29% encoding time with a

negligible BD-Rate increase.

Keywords—VVC, Early-Terminate Hierarchical, CNN.

I. INTRODUCTION

Nowadays, digital videos have been covering a very wide
range of applications from multimedia messaging, video
telephony, video conferencing and display in high resolution
formats like high definition (HD), Full HD, 2K, 4K, and 360-
degree. The progression of video formats and resolutions
requires a new video coding standard with better performance
compared with previous standards. However, to achieve the
high performance, the state-of-the-art video codec makes
computational complexity greatly increase.

Block partitioning is one of the most important techniques
in video coding in which the video picture is adaptively
divided into smaller blocks for encoding. In H.264/AVC [1],
each of frames is partitioned into macro-blocks (MB) with a
size of 16×16 Luma samples while HEVC [2] introduces a new
technique called quad-tree partitioning (QT). In QT, each
frame is split into coding tree units (CTUs) with a size of
64×64. After that, CTUs are divided into smaller coding unit
(CUs) of different sizes. CUs in HEVC are always square and
its size can be from 8x8 Luma samples up to the largest coding
units (LCUs).

In the newest video coding standard, namely Versatile
Video Coding [3], Joint Video Exploration Team (JVET) also
applies block-based hybrid mechanism to get a flexible
hierarchy unit representation. To get better coding efficient,

VVC has been adopted many new coding tools, such as quad-
tree nested multi-type tree (QTMT) in the block partitioning
process and the largest supported size is up to 128x128. CUs in
VVC can be partition into smaller square or rectangle block
using quad-tree, binary split or ternary split as shown in Fig. 1.

Fig.1. An example of QTMT in VVC

Because of using QTMT, the complexity has also increased
greatly. In the newest document, JVET reports that
computational complexity of VVC increase more than 30 times
compared to HEVC [13]. Therefore, it is necessary to reduce
the processing time of the codec, especially at the encoder side.

Artificial intelligent, notably the deep learning technique
has recently been used in a wide range of vision and image
processing applications [10]. Following this direction, Mai Xu
et al. [6] introduced a deep learning based method to reduce
complexity of the HEVC encoder. Inspired from this work, we
propose a combining network to predict the CU partition for
the inter prediction mode in VVC encoder. In which, deep
early-terminated hierarchical convolutional neural network
(ETH-CNN) structure is developed to learn the hierarchical CU
partition map for predicting the CU partition of intra-mode
VVC, and early-terminated hierarchical long and short-term
memory network (ETH-LSTM) is proposed to learn the
temporal correlation of the CU partition. In this paper, we
introduced a deep learning approach to reduce the complexity
of the CU partition in VVC standard by applying ETH-CNN.

To demonstrate the efficiency of proposed method, the rest
of this paper is organized as follows. Section II briefly
introduces the VVC block partitioning and related fast block
partitioning algorithms. Section III presents the proposed ETH-

mailto:ngocminhc2nc1@gmail.com

CNN model while Section IV discusses the experimental
results. Finally, Section V gives the conclusion of this paper.

II. BACKGROUND AND RELATED WORKS

A. Block partitioning in VVC

In this section, we review the CU partition in VVC
standard, which have many different from that in previous
video coding standard. Fig.2 shows an image region which is
partitioned and encoded by VVC (left) and HEVC (right). We
can observe that VVC supports both square and rectangle
partition shapes while block in HEVC is only square shape.

Fig.2. Block partitioning in H.266/VVC (left) and H.265/HEVC (right)

In HEVC [2], input frames are divided into the basic
coding structure called coding tree unit – CTU, with the
maximum allowed luma block size is 64×64. After that, CTU
with size of 2N×2N is recursively partition into smaller coding
unit – CU via the quad-tree. By using quad-tree structure, CTU
and CU are split into four sub-CU with size of N×N [9].

Inspired from the HEVC structure, the raw image in VVC
is divided into a sequence of CTUs with the same concept in
HEVC [7, 8]. However, VVC allows the maximum size of the
Luma block in a CTU is 128×128.

Firstly, in depth = 0, if CTU size is larger than maximum
allowed binary and ternary tree size, only quad-tree structure is
applied to partition CTU into four smaller CU with size of
64×64. After that, while depth >= 1, Quad-tree with nested
multi-type tree (QTMT) containing binary and ternary splits is
used to partition current block into sub blocks. Fig. 3 shows
four splitting types of multi-type tree structure. A CU can be
split into sub CUs by vertical binary splitting
(SPLIT_BT_VER), horizontal binary splitting
(SPLIT_BT_HOR), vertical ternary splitting
(SPLIT_TT_VER), and horizontal ternary splitting
(SPLIT_TT_HOR) mode. In most case, if the width or height
of the color component of the CU is smaller than maximum
supported transform length, CU, PU and TU have the same
block shape and size in the QTMT coding block structure. In
case that the width or height of the coding block is larger than
the maximum transform width or height, the coding block is
automatically split in vertical and/or horizontal direction to
meet the supported transform size.

If a part of the current CU exceeds the bottom or right
picture boundary, it is forced to be split until all samples of
every coded CU are not located outside the picture boundaries.
For example, when a portion of the current CU exceeds both
the bottom and the right picture boundaries, it is forced to be
split with QT split mode if the sub-CU size is larger than the

minimum QT size, otherwise, the block is forced to be split
with SPLIT_BT_HOR mode.

Fig. 3. Binary and Ternary Split in H.266/VVC

Due to the use of multi-type tree, there are some different
splitting patterns give the same results of coding block
structure. Therefore, in VVC, some of special splitting patterns
are not allowed. Fig. 4 describes one of the special cases.
Assume that current CU is a square shape, the encoder will use
SPLIT_BT_VER mode in both current CU and sub-CUs,
instead of use SPLIT_TT_VER and use SPLIT_BT_VER for
the central sub-CU in next step.

Fig. 4. A special case of multi-type tree

B. Fast block partitioning algorithm in VVC

In general video codec, the encoder will evaluate every
possible partition structure, and choose the best partition
structure with the minimum RDCost, computed in equation (1).

𝑅𝐷𝐶𝑜𝑠𝑡 = 𝐷 + 𝜆 × 𝑅 (1)

 Where, D is the difference between original and the
reconstructed information. R represents the bitrate which is
needed to encode the CU and λ is a Lagrange multiplier.

 Targeting the VVC complexity reduction, Zhang et al.
proposed in [4] a texture based fast CU partitioning method.
This research includes two algorithms: i) early terminate the
splitting process based on texture energy and ii) using texture
direction to decide the splitting mode of CUs. In [5], Jin et al.
introduced a novel fast QTBT partition decision method based
on Convolutional Neural Network (CNN). First, the current
frame is divided into a set of 32×32 blocks and CNN model
will predict the minimum and maximum partition depth for
QTBT partition. In the depth 0, if the classification result is
‘‘0’’ for anyone patches within CTU, it means that the CTU is
smooth and no longer split. Otherwise, divided it into smaller
block. In step 2, the current depth is 1, if all patches of the
current CU are smooth and have label ‘‘0’’ or ‘‘1’’, processor
calculates RD cost of the 64×64, and then calculates RDCost of
each sub-CUs in next step. If the classification results of CNN
are bigger than “1”, it means that current 64x64 CU has some
detail texture, so that processor directly divides it into four sub-
CUs using quad-tree partition without calculating RD cost. In
step 3, the current size of block is 32×32, the encoder will
calculate RD cost for each partition depth within the candidate
depth range, and finally determine the optimal QTBT partition
structure through RDO process.

SPLIT_TT_HORSPLIT_TT_VERSPLIT_BT_VER SPLIT_BT_HOR

III. PROPOSED METHOD

A. Fast QTMT structure

Because of using quad-tree nested multi type tree, the
existing fast algorithms for block partitioning proposed for
HEVC cannot be directly and fully implemented in VVC. So
that, we only applied ETH-CNN to square block and quad-tree
structure to reduce complexity of the intra mode in VVC.

Fig. 5. Proposed Method

Fig. 5 specifically described our proposed method. The
input of the process is a CU. The algorithm flow is listed as
follows:

1) If the size of CU is 128×128, it will be applied quad-tree
to split into 4 square sub-CUs.

2) If the current CU is a square block and the size of width
and height are available, the ETH-CNN model predicts the
probability (PsplitQT) of splitting current CU by quad-tree.

3) The encoder compares this probability with a threshold
(𝛼𝑙= 0.5) and decides whether or not the current CU use quad-
tree structure to split into sub-CUs. If this probability larger
than threshold, the current CU will be split by quad-tree nested
multi type tree and if this probability smaller than threshold,
current CU is split into 2 or 3 sub-CUs by using multi type
tree.

4) Return to step 1 to process the next CU or sub-CU.

B. ETH - CNN model

ETH-CNN was originally introduced by Mai Xu et al. [6],
to reduce the computational complexity of the prior HEVC
standard. In this method, ETH-CNN is used for learning to
predicting the CU partition of intra-mode instead of using
conventional brute-force RDO search. According to the
mechanism of CU partitioning, the ETH-CNN structure is
divided into three branches. ETH-CNN has an input as CTU
which is divided into sub-CU with size of 64×64,
32×32,16×16, corresponding to all predictions of HCPM at
three levels (for more information about HCPM, we suggest
read carefully [6]). Then, the data is passed through the layers
to be processed and the result is the probability of the split of
that CU.

Inspired from this work, we propose to early select the CU
size and partition following a trained CNN model as shown in
Fig. 5. In this structure, three parallel branches of ETH-CNN
structure will represent the three levels of CU depth,
respectively. The level of CU depth in each branch will be
changed from [6], specifically B1 corresponding to depth 1, B2
corresponding to depth 2 and B3 corresponding to depth 3. The
input of these branches is the Y channel of CU size 64×64
(denoted by U) taken from the original CU size 64×64 (depth
level is 1). The output of ETH-CNN is saved as a hierarchical

Start

CU size is available?
Process by

Default

ETH-CNN

PsplitQT > threshold
Split by
QTMT

Split by MTT

End

CU is a square shape

true

false

true

false

true

false

Original CU

size 64×64

Y channel of

CU size 64×64

Normalized

in globally

Normalized

in 32x32

Normalized

in 16x16

Mean

removal

Down

sampling

Convolution
Concatenation

Full Connection

a

QP

QP

QP

f(1-1)

f(1-2)

f(1-3)

f(2-1)

f(2-2)

f(2-3)

N1 64x64

N2 64x64

N3 64x64

S1 16x16

S2 32x32

S3 64x64

C1-1
C2-1 C3-1

C1-2
C2-2

C3-2

C1-3 C2-3
C3-3

Level 3

Level 2

Level 1

B1

B2

B3

HCPM

1
ˆ (U)y

4

2 1
ˆ{ (U)}i iy =

4

3 , , 1
ˆ{ (U)}i j i jy =

(Level 1

 split)

(Level 2

 split)

QP

QP

QP

B1

B2

B3

Preprocessing

Fig. 6. ETH-CNN structure

CU partition map (HCPM) which as same as the quad-tree
structure in HEVC and has three levels from 1 to 3
corresponding to CU size 64×64, 32×32 and 16×16.

Each branches containing two Preprocessing layers, three
Convolution layers, one Concatenating layers and three Fully
Connected layers. In which, the 3 Fully Connected layers on
branch 2 and branch 3 of ETH-CNN can be skip if the one in
upper branch make a prediction that the CU will not be split.

Since the input of three branches is Y channel of CU at
depth 1, this data is firstly normalized its size to fit with the CU
depth of each branch: 64×64 for branch B1, 32×32 for branch
B2 and 16×16 for branch B3. The normalized data is the input
of 2 Preprocessing layers and in which, the raw data is
processed by mean removal and down-sampling to make input
data on each branch become more relevant to that branch's
output requirements.

After that, in each branch, the corresponding preprocessed
data flow through three Convolutional layers to extract feature.
In this paper, we used the same parameter as [6], that is kernel
sizes of convolution layer on 3 branches are same with 4×4
kernels (16 filters) for first layer, 2×2 kernels (24 filters) for
second layer and 2×2 (32 filters) for final layer.

Then, the features extracted from Convolutional layers are
concatenated together and then flattened into a vector a in
concatenating layer.

Finally, all features contained in vector a will be processed
on three branches corresponding to 3 levels of HCPM. In each
branch, the feature extracted flow through 3 fully connected
layers, containing 2 hidden layers and 1 output layer to predict

the level of quad-tree structure. The feature vectors {𝐟1−𝑙}𝑙=1
3

are generated by 2 hidden layers. So that the outputs in B1, B2
and B3 have 1, 4 and 16 elements, serving as the predicted
binary labels of quad-tree structure at the three levels (𝑦̂1(𝐔) in

1x1, {𝑦̂2(𝐔𝑖)}𝑖=1
4 in 2x2 and {𝑦̂3(𝐔𝑖,𝑗)}𝑖,𝑗=1

4
 in 4x4). Besides,

the feature vectors {𝐟1−𝑙}𝑙=1
3 are combined with external feature

to exploit the QP information, so that ETH-CNN can adaptive
to various QPs in predicting quad-tree structure. Especially, if
the branch B1 predicts that current CU is not split, the B2 and
B3 will be skipped, of if the branch B2 predicts that current CU
is not split, B3 will be skipped. Therefore, the complexity of
ETH-CNN is reduced.

After collecting the predicted information for quad-tree

structure, (the binary labels 𝑦̂1(𝐔) , 𝑦̂2(𝐔𝑖) và 𝑦̂3(𝐔𝑖,𝑗)),

probability that the label is 1 is calculated, and then compared
with a threshold (𝛼𝑙) to decide that current CU is split or not.
Since the bi-threshold used in [6] 𝛼𝑙 and 𝛼̅𝑙 all set equal 0.5,
we will use only threshold 𝛼𝑙= 0.5 in this paper.

IV. EXPRERIMENT AND PERFORMANCE EVALUATION

A. Dataset and test condition

The proposed method is evaluated on 9 standard test
sequences in Table 1 with different setting the Quantization
Parameters (QPs) to 22, 27, 32 and 37 under All-Intra main
configuration, respectively.

To obtain the ETH-CNN model, we adopted a similar
training set from [14] where 2000 image were compressed at
four QPs.

To show the complexity reduction performance, the ∆T is
defined by the following equation (2):

∆T=
𝑇𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑−𝑇𝑉𝑉𝐶

𝑇𝑉𝑉𝐶
× 100% (2)

 where ∆T represents the run time saving by using proposed
method, TVVC represents the total run time of the VTM-12.1
[11], TProposed represents the total run time of the proposed
method.

BDBR parameter are used to represent the average bit rate
differences [12].

TABLE I. THE DETAILS OF TEST SEQUENCES

Sequence
Spatial

Resolution

Number of

frames

Frame

Rate
Content type

PeopleOnStreet 2560×1600 150 30 Hz Surveillance

Traffic 2560×1600 150 30 Hz Surveillance

Kimono 1920×1080 240 24 Hz Natural

ParkScene 1920×1080 240 24 Hz Natural

FourPeople 1280×720 600 60 Hz Conference

KristenAndSara 1280×720 600 60 Hz Conference

Johnny 1280×720 600 60 Hz Conference

SlideShow 1280×720 500 20 Hz Screen content

SlideEditting 1280×720 300 30 Hz Screen content

B. Results and discussion

The experiment results of time saving, BDBR of all test
sequence are shown in Table II while Fig.7 illustrates RD
performance of the proposed method.

TABLE II. ENCODING TIME SAVING

Sequence
Time Saving (∆T %) BDBR

(%) QP 22 QP 27 QP 32 QP 37

PeopleOnStreet -33.05 -32.21 -30.34 -24.55 1.20

Traffic -30.81 -29.91 -29.49 -23.33 0.88

Kimono -34.17 -28.15 -18.74 -13.05 0.21

ParkScene -35.51 -43.80 -39.83 -31.54 0.71

FourPeople -32.47 -34.48 -35.64 -33.01 1.17

KristenAndSara -28.69 -22.00 -19.78 -12.65 1.92

Johnny -36.14 -34.59 -33.37 -30.52 1.15

SlideShow -32.28 -33.48 -32.57 -37.01 3.0

SlideEditting -19.79 -24.08 -40.24 -39.01 2.28

Average -31.43 -31.41 -31.11 -27.19 1.39

From the obtained results in Table II and Fig.7, some
conclusions can be given as:

• The proposed method provides a low complexity
solution for the state-of-the-art video coding standard.

• The proposed method can reduce encoding complexity
for high resolution video using H.266/VVC encoder.

• The total encoding time can be cut by proposed method
for All-Intra configuration ranges from -12.65% to -
40.24%, with an average of -30.29%. Meanwhile, the
BDBR is from 0.21% to 3.0%, with 1.39% on average.

• The proposed method can be applied to a variety of
video content (i.e. natural, surveillance, conference,
screen content).

• Quantization parameter does not affect the encoding
time saving.

Fig. 7. RD performance of sequence Traffic and Kimono

 The CU structure partition of the proposed algorithm is
visualized in Fig. 8. The figures are cropped from the first
frame of sequence KristenAndSara under QP 37. We can
observe that the CU structure and video quality of the proposed
algorithm is very similar to the default VTM encoder.

Fig. 8. The CU structure partition result of the default VTM (left) and proposed
method (right)

V. CONCLUSIONS

In this paper, a fast QTMT method is proposed for VVC
intra coding using Early-Terminated Hierarchical CNN model.
The experiment results show that the proposed algorithm can
achieve 30.29% time saving on average while paying for only
1.39% BD-rate increase over the VVC standard test sequences.
In the future, we plan to adapt this model for binary and ternary
split process.

ACKNOWLEDGMENT

Minh DinhBao was funded by Vingroup Joint Stock
Company and supported by the Domestic Master/ PhD
Scholarship Programme of Vingroup Innovation Foundation
(VINIF), Vingroup Big Data Institute (VINBIGDATA), code
VINIF.2020.ThS.43

REFERENCES

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview of
the H.264/AVC video coding standard,” in IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560-576,
July 2003.

[2] G. J. Sullivan, J. Ohm, W. Han and T. Wiegand, “Overview of the High
Efficiency Video Coding (HEVC) Standard,” in IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-
1668, Dec. 2012.

[3] B. Bross, J. Chen, J. -R. Ohm, G. J. Sullivan and Y. -K. Wang,
“Developments in International Video Coding Standardization After
AVC, With an Overview of Versatile Video Coding (VVC),” in
Proceedings of the IEEE, 2020.

[4] Q. Zhang, Y. Zhao, B. Jiang, L. Huang and T. Wei, “Fast CU Partition
Decision Method Based on Texture Characteristics for H.266/VVC,” in
IEEE Access, vol. 8, pp. 203516-203524, 2020.

[5] Z. Jin, P. An, C. Yang and L. Shen, “Fast QTBT Partition Algorithm for
Intra Frame Coding through Convolutional Neural Network,” in IEEE
Access, vol. 6, pp. 54660-54673, 2018.

[6] M. Xu, T. Li, Z. Wang, X. Deng, R. Yang and Z. Guan, “Reducing
Complexity of HEVC: A Deep Learning Approach,” in IEEE
Transactions on Image Processing, vol. 27, no. 10, pp. 5044-5059, Oct.
2018.

[7] Jianle Chen, Yan Ye, Seung Hwan Kim, “Algorithm description for
Versatile Video Coding and Test Model 12 (VTM 12),” document
JVET-U2002, 21st JVET Meeting, by teleconference, 6–15 Jan. 2021.

[8] High Efficiency Video Coding (HEVC), Rec. ITU-T H.265 and
ISO/IEC 23008-2, Jan. 2013 (and later editions).

[9] I. Kim, J. Min, T. Lee, W. Han and J. Park, "Block Partitioning Structure
in the HEVC Standard," in IEEE Transactions on Circuits and Systems
for Video Technology, vol. 22, no. 12, pp. 1697-1706, Dec. 2012

[10] S. Dargan, et al., “A Survey of Deep Learning and Its Applications: A
New Paradigm to Machine Learning,” in Arch Computat Methods Eng
vol. 27, pp. 1071–1092, 2020.

[11] VVCSoftware_VTM-12.1. [Online]. Available:
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-
12.1.

[12] G. Bjontegaard, “Calculation of average PSNR differences between RD
curves,” document VCEG-M33, 13th ITU-T VCEG Meeting, VCEG,
Austin, TX, USA, Apr. 2001.

[13] Frank Bossen, et al., “AHG report: Test model software development
(AHG3)”, document JVET-V0003-v1, 22nd JVET Meeting, by
teleconference, 20–28 Apr. 2021.

[14] [Online]. Available: https://github.com/HEVC-Projects/CPH

