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Abstract—The recent popularity of drones with quadcopter
layouts is threatening public safety and personal privacy. With
the ability to hover and perform complex maneuvers even in
indoor conditions, equipped with video cameras as well as capable
of carrying hazardous materials, drones can truly become a
security threat, especially to vulnerable organizations. Therefore,
detecting and tracking drones in secured areas poses an urgent
task for the surveillance system. In this paper, we design a real-
time drone detection and tracking system with the combination
of multiple deep learning and computer vision techniques: 1)
Yolo-v4 model for detecting drones and 2) visual models for
tracking drones. Besides, we have collected and labeled a larger
drone dataset by mixing the existing datasets with our collected
images. We evaluated three deep learning models for drone
detection on this dataset and acquired the Yolo-V4 model to be
the highest detection performance with AP = 34.63%. Combining
this detection model and the existing visual tracking modules
can boost the drone tracking up to more than 20fps for different
backgrounds at around 700m by using an usual PC without GPU.

Index Terms—Drone Detection, Drone Tracking, Convolutional
Neural Network, Yolo-V4.

I. INTRODUCTION

Drones are vehicles which can fly remotely or autonomously
without a human operator. Thanks to recent technological ad-
vances, drones have been developed and used for a wide range
of applications from government authorities to commercial
related tasks used by civilians such as border security, agri-
culture, construction, law enforcement,wildfire surveillance,
and general cinematography [1]. However, their characteristics
such as versatility, ease of use, cheap price as well as wide
availability also bring serious security threats by malicious use
for criminal activities. A recent report shows that drones have
been used for evil purposes, such as collision hazards, deploy-
ment of explosive weapons, smuggling of illegal substances
and privacy violations. To deal with these existing as well
as future threats, the governments have to develop the right
equipment against illegal drones. Therefore, the development
of a system that regulates drone usages is extremely urgent.

Usually, drones have been possible to be detected, tracked
and located by analyzing the signature of appearance captured
by the individual or integrated equipments, such as radar
[2], radio frequency (RF) sensor [3], acoustic sensor [4]
and cameras [5]. With the development of deep learning,
recently, researchers gradually improve the performance of
drone surveillance systems from the detection stage to track-
ing, jamming and countermeasures. In the field of visual
detection and tracking using surveillance cameras, there have

been many improvements by applying deep learning models
in the detection stage, which makes visual detection become
an essential part of anti-drone surveillance systems.

In this paper, we propose the multimodel of deep learning
and computer vision techniques. Several kinds of one-stage
deep-learning-based drone detection methods were evaluated
to choose the best performance (Yolo-v4). Then, combining
the best deep-learning-based drone detection method with
the visual tracking modules increases both tracking accuracy
and frame rate. The proposed approach is analyzed by our
collection drone dataset to seek a trade-off point between
computational complexity and accuracy. The system can detect
drones with a distance of at least 700m and provide continuous
tracking at more than 20fps using an usual PC without GPU.

The rest of this paper is organized as follows. In Section II,
we summarize the state-of-the-art drone detection and drone
tracking approaches with computer vision and deep learning.
Our design of multiple models for drone detection and tracking
is introduced in Section III. The experimental results are given
in Section IV with different scenarios and comparison to
the state-of-the-art methods. Finally, Section V concludes this

paper.
II. RELATED WORK

A. Drone detection methods using image processing and com-
puter vision

Video-based technique determines the location and moving
direction of a drone via visual motion. Imaging systems
and cameras can be used both in the visual and infra-red
spectrum to detect and classify drones. Not typically a primary
detection source, electro-optical sensors use a visual signature
to detect drones, while infrared sensors use a heat signature.
High-performance camera systems provide images as forensic
evidence. They are often equipped with a high zoom capability
to show small objects at a distance; however, they have range
limitations. Several researchers have suggested methods to
detect a drone and its trajectory by using motion cues [6],
visual marks [7], and shape descriptors [8]. Rozantsev [9]
recovered drone trajectories by using multiple fixed ground
cameras in a dynamic environment. Opromolla [10] exploited
template matching and normalized cross-correlation metrics
for drone detection. Gokcce [11] employed drone detection
and distance estimation using conventional visual features
such as histogram of gradients (HOG). The above mentioned
methods can accurately locate and identify drones. However,
since many similarities between the movements of drones and



other small flying object as birds exist; there are high false
positives on the one hand combined with high false negative
rates on the other due to the increasing number of drone types
and atmospheric opacity

Higher detection and recognition accuracy of these com-
puter vision approaches can be improved by innovative deep
learning techniques. In [12], Recurrent Correlational Networks
(RCN) including four networks with specific tasks was pro-
posed by Yoshihashi to together detect and track small drones.
The representation of non-target and target appearances from
individual frames was determined by a convolutional layer. A
ConvLSTM was used to learn the representations of motion
from multiple frames. After that, correlation maps between
the template and each subsequent frame were generated by
cross-correlation layers to localize the target in the frame.
Finally, fully connected layers were used to generate the
confidence scores. A serial of YOLO network based on deep
CNN has been used for detecting drone [13] [14] [15] [16].
Aker proposed an extension of YOLO, that is a single shot
object detector. Saqib took advantage of fine tuning technique
in the new version, YOLOv2 [14], to train a regressor for
drone detection . Peng investigated different pre-trained CNN
models including Zeiler and Fergus (ZF) and VGG16 coupled
with the Faster R-CNN model for the detection of drones from
video data [17]. The VGG16 and the ZF model were used as
a transfer learning to compensate for the lack of sufficient
dataset and to ensure the convergence during training for the
model. However, multiple small objects in large space are
challenging the approaches to distinctly detect each of them.

B. Drone tracking methods

Drone video object tracking is an important application
of visual tracking technology. In recent years, there have
been two mainstream methods for the development of visual
tracking, tracking with correlation filters, and tracking with
attention mechanisms.

Tracking with correlation filters

Exploiting CF for object tracking started with the method
called the minimum output sum of squared error, MOSSE
tracker [18]. The tracker is constructed and trained using gray-
scale samples in the frequency domain for efficiency. Kernel
cross-correlator (KCC) [19] provides a novel solution for the
CF-based framework with high expandability and brief formu-
lation. For the task of visual object tracking in drone videos,
several algorithms have been proposed based on correlation
filtering. In [20], a fast-tracking stability measurement metric
was designed, based on the peak-to-sidelobe ratio values,
which made the DCF algorithms more robust to complicated
appearance variations. In [21], a novel approach to repress
the aberrances happening during the detection process was
proposed, i.e., aberrance repressed correlation filter (ARCF).
By enforcing the restriction on the rate of alteration in
response maps generated in the detection phase, the ARCF
tracker suppresses aberrances, and thus is more robust and
accurate for tracking objects. By integrating three kinds of
attention, namely contextual attention, dimensional attention,

and spatiotemporal attention, into the correlation filter track-
ing framework, a drone tracker TACF [22] with multilevel
visual attention was proposed, improving the robustness to
challenging visual factors such as partial occlusion and clutter
background.

Tracking with attention mechanism

In visual tracking, CNN-based methods with attention
mechanisms can integrate different visual information to im-
prove tracking accuracy. J. Choi et al. [23] proposed an
attention network to switch among different features to select
the suitable tracking mode. Z. Zhu et al. [24] incorporated
optical flow based on deep learning into the tracking pipeline.
Other tracking methods [25] used feature maps extracted from
deep neural networks to select the appropriate tracking mode
for better performance.

ITII. PROPOSED METHOD
A. Dataset Description

Data collection and preprocessing is a very important step
when implementing a problem applying artificial intelligence.
Deep learning models cannot work without data. When the
dataset is too small, the common phenomenon easily leads to
overfitting when the model cannot fully learn the attributes for
the generalization. In this study, we built ourselves a dataset
collected from the camera, internet images of drones, then
manually labeled them using the Labellmg labeling tool and
standardized label data file as YOLO annotation format. Figure
1 shows several images in the dataset.

Fig. 1: Sample images in the dataset

From public datasets, we collect labeled quadcopter drone
images with different sizes and different background con-
ditions. The collected images was mixed with our images
obtained using a long range surveillance camera. As result, we
have obtained a dataset of about 4,500 color images of drones
that is used to train and evaluate the proposed algorithm later.
This amount of data is sufficient for ensuring comprehensive
and diversity for training and testing detection models.

B. The object detection models

In the literature, there are mainly two types of state-of-
the-art object detectors. On one hand, we have two-stage
detectors, such as Faster R-CNN (Region-based Convolutional
Neural Networks) [26] or Mask R-CNN [27], that (i) use a
Region Proposal Network to generate regions of interests in
the first stage and (ii) send the region proposals down the
pipeline for object classification and bounding-box regression.
Such models achieve better accuracy performance, but are
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Fig. 2: YoloV4 architecture consists of three parts: CSPDarknet53 as the backbone, SPP is used as an additional module of
Neck and PANet is used as a feature fusion module of Neck, YOLOvV3 serves as the Head.

typically slower. On the other hand, we have single-stage
detectors, such as YOLO (You Only Look Once) [13] and
SSD (Single Shot MultiBox Detector) [28], that treat object
detection as a simple regression problem by taking an input
image and learning the class probabilities and bounding box
coordinates. Such models reach lower accuracy rates, but they
are much faster than two-stage object detectors.In this study,
we apply models of single-stage detectors to perform object
detection to ensure the execution speed that meets the real-time
requirement. Specifically, we perform training and compare
drone detection results of three models: SSD MobileNetV2
[29], EfficientDet-D3 [30] and YoloV4 [16]. Finally, we have
YoloV4 as the most efficient drone detection model for usages
with real world complex background conditions and chose this
model to evaluate in combination with tracking models.

YoloV4 Details

Yolo architecture includes: base networks are convolution
networks that perform feature extraction. The next part is the
extra layers applied to detect objects on the base network
feature map. Yolo’s base network uses mainly convolutional
layers and fully connected layers. Before YoloV4 [16], there
were 3 versions of Yolo: YoloV1 [13], YoloV2 (Yolo9000)
[14], YoloV3 [15] which made strong strides in object de-
tection. The appearance of YoloV4 has made great strides
compared to the previous 3 versions. YoloV4’s architecture
has made object detection more accessible to people without
powerful computing resources. The architecture of YoloV4

consists of 3 main parts: Backbone, Neck and Head. YoloV4
uses CSPDarknet53 as backbone with the task of extracting
features from input images. The next step is to mix and
combine the features formed in the ConvNet backbone to
prepare for the detection step, YoloV4 considers a few options
for the neck and finally chose to combine SPP (Spatial
Pyramid Pooling) [31] and PANet [32]. YoloV4 deploys the
same Yolo head as YoloV3 for detection with the anchor-
based detection steps, and three levels of detection granularity.
Some new features in YoloV4: Weighted residual connection
(WRC), Cross Stage Partial (CSP), Cross minibatch Batch
Norm (CmBN), Mish activation, Mosaic data augmentation,
DropBlock regularization, and CloU loss. Figure 2 shows the
general architecture of YoloV4.

Besides, bag of freebies and bag of specials are methods
applied to backbone and detector to increase the accuracy of
YoloV4. Bag of freebies are methods that only change the
training strategy or only increase the training cost (nothing to
do with inference). Bag of specials are plugin modules and
post-processing methods that only increase the inference cost
by a small amount but can significantly improve the accuracy.
In addition to the modified to the state-of-the-art methods
including CBN (Cross-iteration Batch Normalization), PAN
(Path aggregation network),etc., are now more efficient and
suitable for single GPU training.
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Fig. 3: Combination of detection and tracking with key frames

C. Object tracking algorithms

Object tracking is one of the most trendy and under research
topics of Computer Vision that implies several issues that
should be considered while creating tracking systems, such
as visual appearance, occlusions, camera motion, and so on.
In several tracking algorithms Convolutional Neural Network
(CNN) has been applied to utilize its effectiveness in feature
extraction that convolutional layers can characterize the object
from different perspectives and prevent tracking process from
misclassification.

The goal of object tracking is to estimate the state of the
selected object in the subsequent frames. The object being
tracked is usually marked using a rectangle to indicate its
location in the initial frame. When there are no changes in
the environment, object tracking is not overly complex, but
this is rarely the case. Various disturbances are presented
in real world scenarios. These disturbances might include
occlusion, variations in illumination, changes of viewpoint,
rotation, blurring due to motion, etc. The task of designing a
robust and efficient tracker is known to be a very challenging
one.

We use object tracking methods available in the open-source
Computer Vision (OpenCV) library to track drones. OpenCV
basic tracking algorithms are chosen for its versatility and sim-
plicity of use. The OpenCV library includes eight algorithms
for object tracking, which are available through OpenCV
tracking APIL. In the table I we provide general information
about the current-existing algorithms in the OpenCV library
with their publication years and references to research papers
detailing their implementation. In general, tracking an object in
a video stream involves several steps: a) choosing the tracker,
b) selecting the object (target) from the initial frame with the
bounding box, c) initializing the tracker with information about
the frame and bounding box, and d) processing the remaining

frames and find the new bounding box of the object. The last
step usually implements those above steps in a loop.

In our system, we combined the drone detection module
with the tracking module to continuously monitor the detected
drones in real time using the existing visual tracking module.
It helps us to greatly reduce the processing time for object
tracking algorithms that usually require much less computation
power than detection models. Combined with the tracking
algorithm, the detection model doesn’t have to be deployed
on the whole video, instead, we just need to detect objects on
every n-frame and track objects on the remaining frames of
the video. In the case that the detection model may not detect
the object at some frames or cannot detect the object when it
is obscured; using the tracking algorithms can help to predict
the position of the target on those frames, thus ensuring that
the object is monitored continuously.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposal method in two
parts. First, we evaluate the object detection models on a test
set of 1350 drone images built by the research team, which
is independent of 3150 training images. Then, based on the
selection of the detection model, the object tracking algorithms
will be evaluated on each model.

A. The object detection models

Training details: We trained 3 models including SSD Mo-
bileNetV2, EfficientDet-D3 and YoloV4 on the training dataset
of 3150 drone images. The training dataset is divided into
80/20 scale for training/validation. Table II shows the training
details of three models.

Evaluation metrics: In this study, we used AP (Average
Precision) as a metric to evaluate the detection models. The
AP is an arithmetic that computes the inclusion of both
precision and recall. AP is computed by calculating the



TABLE I: OpenCV single object trackers sorted by the year of their publication. Google Scholar Citations are accessed on

April 21th 2020 .

N Tracker Full Name Publication Title and Publication Year
° (Abbreviation) Reference (Google Scholar Citations)
1. Boosting Real-time tracking via on-line boosting [33] 2006 (1432)
2. Multiple Instance Learning (MIL) Visual tracking with online multiple instance learning [34] 2009 (2095)
3. MedianFlow Forward-backward error: Automatic detection of tracking failures [35] 2010 (802)
Minimum Output Sum of Squared . . . . . .
4. Error (MOSSE) Visual object tracking using adaptive correlation filters [18] 2010 (1839)
5. (T;gl‘fg‘)“g Learning Detection Tracking-learning-detection [36] 2011 (3275)
6. %(Igglglzed Correlation Filter High-speed tracking with kernelized correlation filters [37] 2014 (3131)
GOTURN (Generic Object Tracking . . . .
7. Using Regression Networks) Learning to track at 100 fps with deep regression networks [38] 2016 (648)
8. CSRT (Channel and Spatial Reliability Tracker) | Discriminative Correlation Filter with Channel and Spatial Reliability [39] 2017 (444)
TABLE II: Training details of three models
Model input_image_size | initial_learning_rate | base_learning_rate | batch_size framework check_point
. Tensorflow SSD MobileNet V2
SSD MobileNetV2 320 x 320 0.027 0.079 32 Object Detection API FPNLite 320x320
EfficientDet-D3 512 x 512 0.027 0.0001 8 Monk Object Detection EfficientDet-D3
YoloV4 416 x 416 none 0.001 64 Darknet of author AlexeyAB yolov4.conv.137

average interpolation of the precision values over the recall
values in [0, 1]. We use the interpolation method at 101 recall
points which is the method that the authors of the dataset for
object detection of COCO dataset proposed. We also use the
AP metric proposed by these authors to evaluate the detection
models on the COCO dataset, which includes: AP"°YU=0 js the
AP value at threshold of ToU is 0.5, AP™°U=75 is the AP value
at threshold of IoU is 0.75 and AP is the average AP value
for the threshold of IoU from 0.5 to 0.95 with each increment
of 0.05. Apsmall A pmedium = A plarge a0 A P yalues calculated
for objects less than 322, larger than 322 and smaller than 962
, larger than 962, respectively.

AP is based on the precision-recall curve. To reduce the
impact of the wiggles in the curve, we first interpolate the
precision at multiple recall levels before actually calculating
AP. The interpolated precision pjyerp at a certain recall level
r/is defined as the highest precision found for any recall level
r =r:

M

pinterp(r) = maxp(r/)
r'>r
Then, we divide the recall value from O to 1.0 with each
increment of 0.01 into 101 points. Next, we compute the
average of maximum precision value for these 101 recall
values.

AP

1
= To1 Z

re{0.0,...,1.0}

pinterp(r)

2

Compare results: In this section, the research team evaluates
the test results on the models presented in subsection III-B on
the test data set of 1350 images containing the drone that have
been processed, labeled and separated from the training data
set. From there, compare the performance of the best object
detection models today. Table III shows the results with the
measures presented above.

TABLE III: Compare detection result of three models.

Model AP(%) | APso(%) | AP75(%) | APs(%) | APyv(%) | AP

SSD MobileNetV2 20.78 45.78 15.09 3.16 15.66 2791
EfficientDet-D3 24.03 52.24 16.19 0 19.72 30.70
YoloV4 34.63 78.03 21.26 10.56 36.26 36.95

As the results can be seen above, YoLoV4 gives the best
results of the 3 models on all metrics with AP=34.63% approx-
imately 10% more than the 2nd best model, EfficientDet-D3.
Especially, the YoLoV4 model is able to detect small sized
drones with APg = 10.56%, while the SSD MobileNetV?2 is
only 3% and even EfficientDet-D3 cannot detect. Figure 4
show some predicted images of the three models.

B. Combine object detection model and tracking algorithms
for drone detection

It’s very difficult to even for human eyes to detect drones
in complex background of urban objects. For this reason, a
single drone cannot be detected continuously in each image
frame. We propose combining detection and visual tracking for
better monitoring information. In this experiment, we evaluate
the drone monitoring results in 2 ways: 1) using only the
object detection model method and 2) using the detection
model combined with different tracking algorithms. We used
the method as shown in the Fig.3.

Evaluation dataset: We performed this test on two self-
recorded videos visualized in Fig.5 : 1) One with a simple
background of the sky, 2) another with a complex background
(tree, road). Each video describes a moving drone in the
distance from 500m to 700m. The system’s task is to track
the drone in the video. We have labeled the coordinates of the
drone in the video and used them to compare it with predicted
coordinates.

Evaluation methodology: Evaluation metric ensures valu-
able feedback about the algorithm being evaluated, hence
choosing the right metric is essential in the evaluation process.



(a) SSD MobileNetV2

(b) EfficientDet-D3

(c) YoloV4

Fig. 4: Predicted results of the three models. Green boxes are the ground-truth and red boxes are predicted results.

Fig. 5: Testing condition. Simple background (left) with 2042
frames and complex background (right) with 2000 frames

We use the Precision Plot as our evaluation metrics. The pre-
cision plot evaluation metric is based on an average Euclidean
distance between center locations of the tracked object and
the manually labeled ground truth of all the frames in the test
sequence. It represents how far the tracker drifts away from the
actual target. It should be noted that when the tracker fails, if
the Euclidean distance between center locations of the tracked
object and the manually labeled ground-truth is greater than
a threshold, we say the tracker fails. We set a thresholding
in our measurements that are 10px. Along with that, we also
evaluate the FPS, number of true prediction locations out of
the total number of the manual labeled ground truth of all the
frames in the test sequence.

Evaluation result: For each video, we make a series of test
runs on a Linux based machine with i7-7500U @ 2.7GHz.
For the object detection model, we use YOLOv4 because
it is the best model selected in previous experience. The
demonstration video of the experiment can be found by this

link: https://www.youtube.com/watch?v=wOEogESMGS80. We
do the test with two methods: using only the detection model
and using the combination of the object detection model
and the tracking algorithm. The tracking algorithms used
for valuation include KCF, CSRT, BOOSTING, MIL, TLD,
MEDIANFLOW, MOSSE.

TABLE IV: Result on the first video with simple background

True predict | Scale (%) | Precision plot FPS
YOLOV4 only 1784 87.37 4.0568 6.5249
YOLOV4 + KCF 1415 69.29 4.8872 13.1470
YOLOV4 + CSRT 1654 81.00 3.9768 10.5775
YOLOV4 + BOOSTING 1623 79.48 4.3145 9.2950
YOLOV4 + MIL 1319 64.59 5.1119 9.0195
YOLOV4 + TLD 1210 59.26 5.3636 8.1447
YOLOV4 + MEDIANFLOW 1527 74.78 4.3786 13.7125
YOLOV4 + MOSSE 1676 82.08 4.6404 14.4114

In the first video, with a simple background of the sky, the
YOLOvV4 model can easily detect drones on video with the
rate of true predictions being 1784/2042 equal 87.37% and
precision plot equal 4.0568, but the resulting FPS is quite
low (6.52 FPS). With the combination of the object detection
model and the tracking algorithm, the system achieved 14.41
FPS with YOLOv4+MOSSE, the true predictions rate being
1467/2042 equal 82.08% and precision plot equal 4.640. With
YOLOV4+CSRT the true predictions rate is 1654/2042 equal
81.00%, 8.3330 FPS and precision on plot is 3.9768. Using
the combination of the object detection model and the tracking
algorithm, we observed that the resulting differences of true
prediction rate and precision plot between the two methods
are minor, but the system can obtain much higher FPS.



TABLE V: Result on the second video with complex back-
ground.

True predict | Scale (%) | Precision plot FPS
YOLOV4 only 411 20.13 6.0670 5.6134
YOLOV4 + KCF 587 28.75 5.5274 11.2871
YOLOV4 + CSRT 1268 62.10 5.4798 8.3330
YOLOV4 + BOOSTING 947 46.38 6.2284 9.1414
YOLOV4 + MIL 857 41.39 6.5114 5.8678
YOLOV4 + TLD 681 33.35 6.1973 4.5715
YOLOV4 + MEDIANFLOW 782 38.30 6.2111 10.6527
YOLOV4 + MOSSE 603 29.53 6.6368 12.9229

In the second video with a complex background and the
drone in the video is quite small in size, the YOLOv4 model
can only detect with true prediction rate being 411/2000 (equal
20.13%) and FPS is 5.61, precision plot equal 6.0607. But
when we use the combination of YOLOvV4+CSRT, the true
prediction rate is increased up to 1268/2000 (equal 62.10%),
8.3330 FPS and the precision plot is 5.4798. As we can see,
the combination of the object detection model and tracking
algorithm can help both drastically increase the accuracy in
predicting the object’s position and also increase the FPS.
In this video, the model lost track of the drone in various
frames. However, by using the tracking algorithm, we can
track and predict the position of the drone on these frames,
so the system’s ability to continuously monitor the drone is
greatly increased.

V. CONCLUSION

In this study, we have proposed drone detection and tracking
using several recent neural network detection models. We have
trained and evaluated these models to estimate the efficiency
of applying deep learning in drone surveillance. We also
prepare several real-world videos with simple and complex
background conditions. As detector performance was signifi-
cantly reduced in complex background conditions, we propose
a combination of detection and tracking algorithms. The
proposed method demonstrates stable detection and tracking
with a long range pan tilt surveillance camera via experiment
on the real-world videos. In comparison, despite using a
modest requirement of computing power, the method was
practically useful for automatic processing surveillance video
from a pan tilt camera with minimum of 5 degrees in field
of view and 720p resolution and detection range up to 800m.
For future works, we intend to implement the methods on
specially designed cameras to reach better range and speed
performance. Further works will consider extending the model
for multimodal (video, radar, audio, and RF data) networks,
which can enhance the drone detection and classification
performance of surveillance systems.
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