
Development of Lightweight and Accurate Intrusion
Detection on Programmable Data Plane

Thi-Nga Dao, Van-Phuc Hoang, Chi Hieu Ta, Van Son Vu
Le Quy Don Technical University

236 Hoang Quoc Viet, Hanoi, Vietnam
daothinga.mta@gmail.com

Abstract—With the aim of developing a lightweight yet ac-
curate network security method for Internet of Things, this
paper presents the neural-network-based intrusion detection
model that incorporates a parameter trimming method. The
intrusion detection and classification function is implemented
on programmable data plane, thus significantly reducing the
detection time. Moreover, by using the neuron pruning approach,
the proposed architecture requires a much lower delay for traffic
classification with a slight reduction in classification accuracy. We
conduct experiments using a P4 programming language and the
collected results show that the pruned intrusion detection model
with low model complexity is more feasible for edge devices with
constrained computing and memory resources than the fully-
connected model.

Index Terms—Intrusion detection, programmable data plane

I. INTRODUCTION

With the recent exponential increase in the number of
connected Internet of Things (IoT) devices, network security
becomes an integral part of IoT networks. More specifically,
the IoT traffic should be monitored and classified into different
traffic classes (e.g., normal or an attack type). Then, the
networking devices (i.e., switches) take an appropriate action
based on the output of the traffic classification model. There
exist two contrasting requirements for the network security
system: high accuracy and low detection delay. In this work,
we propose an intrusion detection model that can achieve both
the above-mentioned demands.

To produce the low detection latency, the classification
model is usually implemented on edge devices (e.g., switches)
instead of sending traffic to external devices for classification.
One big difficulty of embedding the classification function
on edge devices is that the classification model should have
a lightweight architecture with low model complexity since
the edge devices are usually equipped with limited computing
and memory resources. Note that high accurate classification
models are constructed based on advanced machine learning
techniques (e.g., neural network) with high model complexity.
Therefore, a simplification method is needed to reduce the
model complexity of the classification models.

There are multiple simplification methods applied for the
neural network: neuron pruning [1]–[5], memory reduction
[6]–[8], operations simplification [9]–[11]. Neuron pruning or

This research is funded by Vietnam National Foundation for Science and
Technology Development (NAFOSTED) under grant number 102.02-2020.06.

parameter trimming usually consists of three steps: training
the whole fully-connected network from the scratch, removing
the least important connections from the network, fine-tuning
the pruned network. Memory reduction can be achieved by
sharing the same memory buffer among different weights, thus
allowing less memory to store network parameters. Mean-
while, operations simplification can be done by converting
the complex to simpler operations (e.g., from float to integer
or binary operations). In this paper, we apply the simple
neuron pruning method [2] to reduce the complexity of the
classification model, thus making it suitable for edge devices
with constrained computing resources.

We first present how to construct the pruned model using
the three above-mentioned steps for intrusion detection and
classification that can be implemented on a programmable
switch. Note that the programming language (i.e., P4) for
data plane only supports a limited set of arithmetic opera-
tions. Therefore, a suitable neural network structure should
be selected. More particularly, we use the ReLU activation
function for the hidden layer due to its simplicity. In addition,
network parameters such as weights and biases are converted
to integer numbers for integer operations since P4 does not
consider floating-point operations.

Then, the implementation of the proposed model on pro-
grammable data plane is described in detail. More specifically,
we explain the network topology used to evaluate the per-
formance of the proposed architecture. Next, we present the
structure of programmable switches with four main blocks:
parser, ingress control, outgress control, and deparser. The
position of the classification function is also stated. We also
demonstrate the flow of the intrusion detection model on the
P4 language.

The main contributions of our work is summarized as
follows.

• We construct a lightweight intrusion detection archi-
tecture based on a network simplification method, i.e.,
neuron pruning.

• The proposed method is evaluated with different pruning
rates and compared with the fully-connected architecture
in terms of classification accuracy and detection delay on
programmable switches.

• We present how to implement the network detection and
classification function on programmable data plane.



The rest of the paper is organized as follows. Section II
presents the detail architecture of the NN-based intrusion
detection pruned model. Then, the implementation of the
detection function on programmable switches is described in
Section III. Section IV shows the performance evaluation of
the proposed model with a variety of network parameters.
Finally, we conclude our work in Section V.

II. A NEURAL-NETWORK-BASED INTRUSION DETECTION
MODEL WITH NEURON PRUNING

This paper aims to design a timely and lightweight net-
work intrusion detection model that can be suitable for
programmable networking devices with a limited computing
resource. Recently, neural networks (NNs) have emerged as
an advanced machine learning technique to learn a non-linear
mapping from input features to output values. However, NNs
suffer from the high model complexity, which leads to high
detection delay.

To address the issue of large detection latency, we apply a
neuron pruning technique that trims unnecessary connections
of the model and only keeps salient weights. The architecture
of the pruning-based network intrusion detection model is
shown in Figure 1. The architecture consists of three layers:
input, hidden, and output. The ReLU activation function is
used for the hidden layer since it can be easily implemented
using the P4 programming language. The sigmoid and softmax
functions are considered for the detection and classification
models, respectively.

Fully-connected Model Pruning-based Model

Pruned Neuron

Input
Layer

Hidden
Layer

Output
Layer

Neuron Pruning

Fig. 1. The pruning-based intrusion detection architecture

There are three steps for the training procedure: learning
the fully-connected model, pruning unimportant connections,
re-training the pruned network. In the first phase, parameters
including weights and biases are trained by minimizing the
entropy-based loss function L as follows.

L = − 1

m

m∑
j=1

ny∑
i=1

t
(j)
i log(y(j)i ) (1)

where m and ny are the number of samples and the number
of data classes, respectively, while t

(j)
i and log(y(j)i ) denote

the ith true label and predicted output of the jth sample.
In the next phase, the trained weights with the least mini-

mum absolute values are removed from the network since the

less value of weight means less important for the network. We
define the pruning rate pprune (0 ≤ pprune ≤ 1) as the ratio
of the number of removed connections to the total number of
connections of the fully connected layer. The percentile pw of
the absolute weight values is calculated. Then, if a weight with
the absolute value is greater than pw, we keep this connection.
Otherwise, the connection is trimmed from the network. We
use a binary mask matrix M with the same size as the weight
matrix to denote the pruning status of weights. For example,
for the connection from the input to the hidden layer in Fig.

1, the binary mask is represented as M =

0 1 0 1
0 0 1 0
0 1 0 1

.

Since the first neuron of the hidden layer is removed, the first
column of M is set to 0.

In the final phase, the remaining connections of the pruned
network are re-trained. We can call this step is fine-tuning.
The entropy-based loss function is still used for re-training.
The difference with the 1st phase is that we multiple the
connections with the binary mask matrix so that the pruned
weights are not trained in this phase.

Note that since the P4 language only supports integer
operations, we need to convert the trained network parameters
into integer values. Assume that k bits are used to represent the
fractional part of parameters. Let W and b denote the trained
weight and bias float values, respectively. We define X and
h as input features and hidden units. Then, the hidden units
hint are derived as below.

Wint = int(W × 2k) (2)

Xint = int(X × 2k) (3)

bint = int(b× 22k) (4)

hint =

{
(WintXint + bint)//2

k, if WintXint + bint ≥ 0

0, otherwise.
(5)

After doing the division (//), we get the integer part of the
output of the division.

After applying the neuron pruning method, the model
complexity can be considerably reduced. We now compare
the number of floating-point operations (FLOPS) between the
fully-connected and pruned models in the case of a hidden
layer. We define nx and nh as the number of input and
hidden units, respectively. Then, the number of FLOPS can
be reduced by (nxnh+nhny)pprune. In our case, the number
of input features and output units are 6 and 5, respectively.
If the number of hidden features is 20 and pprune = 0.5, the
proposed pruning-based architecture can reduce 110 multipli-
cation operations compared to the fully-connected model.

After fine-training the pruned network, the parameters are
sent to programmable switches. Each switch computes the
output values y that represent the probability of traffic classes



for an incoming packet. Then, the packet is classified into
label with argmax(y). Depending on the classified label, we
can take different actions for this packet. For example, the
packet can be forwarded normally or dropped at the switch.

III. IMPLEMENTATION OF THE INTRUSION DETECTION
FUNCTION ON PROGRAMMABLE DATA PLANE

In this section, we describe how to implement the intrusion
detection function on programmable data plane. Figure 2
shows the network configuration with two hosts (i.e., h1 and
h2) and a programmable switch that connects these hosts. The
host h1 is a sender that generates data traffic following a given
trace and then sends the packets to the host h2 via the switch.
We use the dataset [12] for data generation. Upon packet
arrival, the switch analyzes the packet header and extracts
input features. Then, the switch selects an appropriate action
based on the probability of traffic classes. For our simulation,
we assume that all packets are forwarded to the host h2 to
measure the detection delay at the switch. The Mininet [13]
network simulation is used to set up the network topology
including hosts and links connecting hosts. Note that the link
delay is ignored and the link bandwidth is set to 30 Mbps.
For packet generation and reception, the Python-based scapy
library is used.

Receiver

P4-supported Switch

Pcap
traces

Reading pcap traces
Generating & sending data

 Receiving packets
Computing E2E delay

classification
logs

Classification of incoming traffic

Sender

Fig. 2. The network topology for performance evaluation

Figure 3 shows a common architecture of the p4-supported
switch consisting of four main programmable blocks: parser,
ingress control, outgress control, and deparser. When an in-
coming packet arrives at the switch, the Ethernet, IP, and TCP
headers are analyzed to extract necessary information (e.g.,
source and destination IP addresses, source and destination
port numbers, and arriving time). Then, the packet is processed
at the incoming and outgoing ports by ingress and outgress
control blocks, respectively. Look-up tables are used to find
appropriate actions (e.g., sending data to a specific port and
updating the time-to-live parameter) for the given packet.
The switch can select one of the possible actions including
forwarding, dropping packets, and adding the alarm field to
the packet header.

To embed the intrusion detection function on the pro-
grammable switch, we use the P4 programming language.
Note that this language only supports a limited number of
operations on binary and integer numbers. More specifically,
arithmetic operations including addition, subtraction, and mul-
tiplication are supported while no division/modulo operation
can be used. Bit shift and element-wise comparison operations

Eth

IP

TCP
Match Action

Add headers:
Eth, IP, TCP

Match Action

Parser Ingress Control Outgress Control Deparser

Incoming
packets

Match Action

Match Action

Match Action

Match Action Outcoming
packets

Possible NIDS actions: 
1. Forward,
2. Drop
3. Add alarm header

Fig. 3. The implementation of intrusion detection on the programmable switch

are also supported. We apply the right bit shift instead of
division operation to control the number of bits used for units
in the network.

To add a customized packet processing function on pro-
grammable data plane, we can edit the ingress or outgress
control blocks. Figure 4 shows the main components of
the NN-based intrusion detection model implemented in the
outgress control. We first declare variables for hidden units
(e.g., h0 and h1) using 32-bit signed binary numbers. Then,
hidden units are computed based on input features and network
parameters (weights and biases). We implement the ReLU
activation function by comparing the most significant bit of
hidden units with 1. For example, if h0 is a negative number,
then h0 = 0. Otherwise, the value of h0 is divided to 210 since
we use 10 bits for the fractional number of weight and bias
parameters. Finally, the units at the output layer are derived
using the hidden units. The traffic is classified into the label
with the highest output value.

Fig. 4. Flow of the NN-based intrusion detection model

IV. EXPERIMENTAL RESULTS

The experiments are implemented in a desktop PC with Intel
Core i7 2.5GHz CPU (with the Radeon R9 M370X 2048 MB
and Intel Iris Pro 1536 MB GPU support) and 16 GB RAM.



The dataset [12] is used to evaluate the proposed architecture.
More specifically, we divide the whole dataset into training and
test sets with a ratio of 7:3. The parameters are trained using
the training set while the evaluation performance is collected
on the test set only. There are five different traffic classes:
normal, reconnaissance, man-in-the-middle, denial-of-service,
and botnet. We select 6 salient input features from the set of
features provided in [14].

Figure 5 shows the learning curves of the training process
when the pruning rate is set to 0.6 and there is a hidden layer of
10 units. In the first phase, while training the fully-connected
(FC) model, the loss value on training and validation sets
is reduced over time. When there is no improvement in
classification accuracy on the validation set for the most recent
20 epochs, the training procedure of phase 1 stops. Then,
the least important trained weights with the smallest absolute
values are pruned in the second phase. Lastly, we re-trains
the pruned model by fine-tuning the remaining parameters to
minimize the loss function. During this phase, the loss value
gradually gets smaller. Similar to phase 1, we terminate the
re-training procedure when the classification accuracy is not
improved for the last 20 epochs. After phase 3, the traffic
classification accuracy of the pruned model (around 94%) is
slightly lower than that of the FC model (around 94.3%). Since
we remove 60% of connections in the FC model, the loss
function of the pruned model is considerably higher than that
of the FC architecture.

0 20 40 60 80 100 120 140
Number of Epochs

0

0.05

0.1

0.15

0.2

0.25

Lo
ss
 V
al
ue

Training FC Model Re-training Pruned Model

Loss Value of Validation Set
Loss Value of Training Set

90

92

94

96

98

Cl
as
sif
ica

tio
n 
Ac
cu
ra
cy
 (%

)

Accuracy of Validation Set
Accuracy of Training Set

Fig. 5. Learning curves of the pruning-based network with the pruning rate
0.6

We now investigate the effects of the number of bits k used
to present the fractional number of weights. For example, if
weight is w = 1.25 and we use 4 bits for the fractional part,
then the weight value after rounding is 1.25 × 24 = 20. The
pruning rate is set to 0.6 and there are 10 hidden units. Table
I shows the performance of the pruned model with different
k values from 4 to 24. If k increases, the performance of the
pruned model is improved significantly and starts to saturate
when k is greater than 10. Therefore, we use k = 10 bits as the
default value. In cases of k ≥ 12, the classification accuracy

becomes stable at around 93.19%.

TABLE I
EFFECTS OF THE NUMBER OF BITS FOR PARAMETERS

Number of bits Classification Accuracy (%)
4 75.43
6 83.03
8 90.79

10 92.83
12 93.15
16 93.19
24 93.19

We also evaluate the impacts of the number of hidden units
on the classification accuracy of the pruned model as shown
in Table II. The number of hidden units varies from 5 to 30
while the pruning rate is 0.6. Generally, the performance of
the proposed model is slightly improved with the increase in
the number of hidden units. Since the model complexity and
the detection latency become larger when using more hidden
units, we select 10 hidden units as the default value for other
experiments.

TABLE II
EFFECTS OF THE NUMBER OF HIDDEN UNITS ON PERFORMANCE OF THE

PRUNED MODEL

Number of hidden units Classification Accuracy (%)
5 92.99
7 93.33

10 93.34
20 93.42
30 93.93

0 0.2 0.4 0.6 0.8
Pruning Rate

88

90

92

94

95

Ac
cu

ra
cy

 (%
)

Accuracy

0.6

0.7

0.8

0.9

1

De
te

ct
io

n 
De

la
y 

(m
s)

Detection Delay

Fig. 6. The effects of pruning rate on performance of the pruned model

To evaluate the impacts of pruning rate pprune on the per-
formance of the pruned model, we quantify the classification
accuracy and detection delay with different pprune values from
0 to 0.8. The number of bits for the fraction part of parameters



is set to 10. The FC model is considered with pprune = 0. The
pruned model is trained using five different learning rates (i.e.,
0.001, 0.005, 0.01, 0.03, 0.05) and the parameters are selected
when the highest performance on the validation set is recorded.
As shown in Figure 6, the pruned model and the FC model
have similar performance when pprune < 0.4. This is because
there are enough connections to accurately classify traffic in
cases of a low pruning rate. When we increase the pruning rate,
the accuracy keeps decreasing gradually. For example, when
pprune = 0.8, accuracy is reduced by 4.3% compared to the
pruning rate of 0.4. Meanwhile, thanks to the reduction of the
number of parameters, the detection delay can be improved
from 0.8511 to 0.73 (ms) (i.e., a reduction of 14.2%).

From Figure 6, we include that using the simple neuron
pruning method can achieve significantly lower detection la-
tency than the FC model with a small sacrifice in classification
accuracy. By reducing the model complexity, the pruned model
of intrusion detection becomes relevant to programmable
switches with constrained computing resources. By measuring
the detection delay of the pruned model, we can infer the
maximum data rate that can be classified by a switch. For
example, if the detection delay is 0.8 (ms) per packet, the

switch can classify up to
1

0.8
× 1000 = 1, 250 packets per

second. If each packet has 1,000 bytes, the maximum data
rate is around 10 Mb/s. Note that the measured detection
delay is based on the desktop computer and the real delay
should greatly depend on the hardware configuration of the
programmable switch. Therefore, the real maximum data rate
that can be processed by a switch can be much larger than
10 Mb/s. In our simulation, we aim to compare the detection
latency of the pruned model with different parameters and the
collected performance can be used to understand the impacts
of network parameters on the pruned classification architecture
as well as the performance of fully-connected model.

V. CONCLUSION

This paper aims to achieve the balance between low de-
tection delay and high accuracy for the intrusion detection
function by incorporating the neural network detection model
with the neuron pruning method. Using a high pruning rate
value, the parameter trimming approach can reduce a consid-
erably large number of network connections, thus leading to
low model complexity and making the pruned model suitable
for programmable data plane. By reducing the detection delay,
the proposed architecture allows the network to manage more
data traffic, which is an important requirement of the recent
Internet of Things.

REFERENCES

[1] T.-N. Dao and H. J. Lee, “Stacked autoencoder-based probabilistic
feature extraction for on-device network intrusion detection,” IEEE
Internet of Things Journal, 2021.

[2] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[3] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient transfer learning,”
CoRR, vol. abs/1611.06440, 2016.

[4] R. Yu, A. Li, C. Chen, J. Lai, V. I. Morariu, X. Han, M. Gao, C. Lin, and
L. S. Davis, “NISP: pruning networks using neuron importance score
propagation,” CoRR, vol. abs/1711.05908, 2017.

[5] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in Neural Information
Processing Systems 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds.
Morgan-Kaufmann, 1993, pp. 164–171.

[6] S. Wiedemann, K.-R. Müller, and W. Samek, “Compact and com-
putationally efficient representation of deep neural networks,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 3,
pp. 772–785, 2019.

[7] K. Shirahata, Y. Tomita, and A. Ike, “Memory reduction method for deep
neural network training,” in 2016 IEEE 26th International Workshop on
Machine Learning for Signal Processing (MLSP). IEEE, 2016, pp. 1–6.

[8] Y. Pisarchyk and J. Lee, “Efficient memory management for deep neural
net inference,” arXiv preprint arXiv:2001.03288, 2020.

[9] M. Rusci, L. Cavigelli, and L. Benini, “Design automation for binarized
neural networks: A quantum leap opportunity?” in 2018 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). IEEE, 2018, pp.
1–5.

[10] T. Simons and D.-J. Lee, “A review of binarized neural networks,”
Electronics, vol. 8, no. 6, p. 661, 2019.

[11] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary neural
networks: A survey,” Pattern Recognition, vol. 105, p. 107281, 2020.

[12] K. Hyunjae, A. Dong Hyun, L. Gyung Min, Y. Jeong Do, P. Kyung Ho,
and K. Huy Kang, “Iot network intrusion dataset,” 2019.

[13] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.
New York, NY, USA: Association for Computing Machinery, 2010.

[14] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” in
Network and Distributed Systems Security (NDSS) Symposium 2018,
2018.


