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Abstract—Every season, leaf diseases are one of the main
reasons affecting the production of many crops, which cause
enormous damage to farmers. To minimize the loss, deep
learning techniques are utilized to detect leaf infection and
wildly outperformed the traditional method of manual detection.
However, deploying such models is a challenge since devices in
the field normally have limited resources and low computational
power while large datasets have to be used. Therefore, in this
paper, we benchmark the most popular deep learning models
for multi-leaf disease detection to gauge which model is the
most suitable for real deployment. Using a real-world large-
scale dataset from PlantVillage and a Raspberry Pi 3, we found
that MobileNet V3 provides a reliable accuracy of 96.58%, small
Inference/Initialization time of 127 ms and 11 ms respectively,
requires only 7.4 MB of memory in total, and hence the most
appropriate choice for a real farm.

Index Terms—deep learning, edge computing, precision agri-
culture, multi-leaf disease, image processing

I. INTRODUCTION

T In the last decade, climate change has not only impacted
directly the masdeep learning models and quality of agri-

cultural yields but also increased the intensity and complexity
of crop disease. To counter that, smart farming has been devel-
oping rapidly. Incorporate with many advanced technologies,
smart agriculture able to monitor environmental conditions
and develops schemes to archive optimum health and yield
of the crops while saving natural resources. Particularly, with
computer vision, smart farming helps farmers quickly identify
and accurately provide solutions for many plant diseases [1].
Thank to the success of smart farming, the number of Internet
of Things (IoT) devices skyrocket. However, the widespread
use of agricultural IoT has preceded the explosive growth of
sensors and growing amounts of data that increase the load on
the cloud server. Edge computing can solve this challenge by
handling several parts of a task at the local computer nearby
the end-users. The edge devices have low-cost and limited
resources that can be used with great efficiency for some
specific tasks [2].
AI is applied not only in medicine, transportation, security but
also in agriculture thanks to image recognition. In general,
implementing systems based on AI solutions often requires
large resources of data as well as computing power. Therefore,
most of these models usually operate on high-powered devices
at the center. Incorporating AI at the edge has been proposed
recently to promote the strengths of edge computing, called

edge intelligence. However, the development of edge intelli-
gence systems faces several challenges, and one of these key
challenges is that the computing power of edge devices cannot
meet the same resource demands as the normal center devices
[2] [3]. Nevertheless, Edge intelligence system is usually de-
ployed in agricultural areas where connections are not secure,
latency is large and varied, memory capacity and power are
not guaranteed. This shows the need of promoting the research
on Computer Vision to be more and more optimized.
Due to several mobile DNN models for detecting plant dis-
eases that have been proposed in recent years, they can bring
lightweight resource consumers that can be applied to edge
computing devices. However, to the best of our knowledge,
there is currently no study to benchmark the state-of-art deep
learning models in multiple types of plant databases. We will
fill the gap and evaluate these models in a practical edge device
to estimate the ability of deploying to a real IoT agriculture
system. The organization of the paper as follows. Section II
outlines the related works which concern our proposal. Section
III provides the main principles of modern deep learning mod-
els. Section IV focuses on our works with experimental results.
Last but not least, in section V, we will discuss scaling down
depth of models for smaller edge device/mobile to processing
for low-quality images such as those were taken from drones
with limited computational resources. The conclusion and our
future work will be shown in the last section.

II. RELATED WORK

Currently, artificial intelligence (AI) applications are grow-
ing strongly with breakthroughs in deep learning and many
innovations in architectural hardware. Since then, there has
been a prevailing trend to integrate Edge Computing and AI
to create Edge Intelligence to effectively handle a large amount
of IoT data. Edge intelligence leverages the available data and
resources of end devices, edge nodes, and cloud centers to op-
timize the total training and reasoning performance of the deep
learning model. AI is primarily employed in video analysis,
unmanned agricultural machinery, pest identification, and plant
species identification [3] [4]. Along with the development of
deep learning architectures, researchers applied them to image
recognition and classification. These architectures have also
been implemented for different agricultural applications. On
top of that, deep learning (DL) approaches are also used for



2

critical tasks like plant disease detection and classification,
which is the main focus of the review in [4]. However, in [4]
the authors used data from only one specific plant to compare
between different DL models.
To detect plant diseases and pests based on deep learning,
the authors in [3] provided a novel classification of detection
methods based on deep learning and analyzed the main aspects
of 8 DNN models based on classification network, detection
network, and segmentation network. The study used several
common datasets to find out the advantages and disadvantages
of each method. However, this proposal does not concern
with the efficiency of a practical image recognition method.
To classify tomato plant diseases, the authors in [5] focused
on fine-tuning based on the comparison of the state-of-the-
art architectures: AlexNet, GoogleNet, Inception V3, ResNet
18, and ResNet 50. The dataset used for the experiments
is contained by nine different classes of tomato diseases
and a healthy class from PlantVillage. An evaluation of the
comparison was finally performed on several performance
metrics such as accuracy, precision, sensitivity, specificity, F-
Score, Area Under the Curve (AUC), and receiving operating
characteristic (ROC) curve.
In [6], the authors propose a multi-plant disease diagnosis
method using the deep learning technique. In which, the
author surveyed that most of the techniques are plant-specific
or disease-specific. They propose a novel multi-label clas-
sification for leaf images of six plants, including tomato,
potato, rice, corn, grape, and apple in various online datasets.
The performance of DL models is compared by precision,
recall, and F1-score metrics. There is no efficient computation
concerned with the experimental results.
Intending to find a solution using deep learning suitable
for edge computing to serve the problem of disease plant
diagnosis of many crops in practice, the above studies have
not mentioned the computational performance parameters of
deep learning models on resource-constrained edge devices.
Therefore, in this paper, we will conduct experiments and
evaluate some of the most modern deep learning models on a
multi-tree dataset to suggest the appropriate approach to real
agricultural IoT systems.

III. STATE-OF-ART DEEP LEARNING MODELS

With the goal of focusing on low-power edge devices, we
survey and evaluate some of the most modern and lightweight
models available today. This session will briefly introduce the
features of the models on which we will perform performance
evaluations in the following section. In detailed, we evaluate
the applicability of deep learning technique for some critical
aspects described above for detecting leaf disease at the
edge computing devices of agricultural IoT systems. In this
study, we include several Models that improve the hardware
efficiency such as MobileNets, MnasNet, and EfficentNets
Lite, and popular DNN models like InceptionNets, ResNets.

1) InceptionNets: The GoogLeNet variation with Incep-
tion modules was introduced in 2016 [7]. Inception-v3 has
achieved good classification performance in several biomedical
applications using transfer learning. It proposed an inception

Fig. 1. The Inception building block [8]

Fig. 2. Conceptual overview of the ResNet building block [8]

model which concatenates multiple different sized convolu-
tional filters into a new filter. The goal of the inception module
is to act as a “multi-level feature extractor” by computing 1×1,
3×3, and 5×5 convolutions within the same module of the
network as illustrated in Figure 1. Such design decreases the
number of parameters to be trained and thereby reduces the
computational complexity.

2) ResNets: The ResNet models, which are based on deep
architectures that have shown good convergence behaviors and
compelling accuracy, were developed by He et al. [7]. ResNet
was built by several stacked residual units and developed
with many different numbers of layers: 18, 34, 50, 101, 152,
and 1202. The residual units are composed of convolutional,
pooling, and layers as shown in figure 2. ResNet 50 contains
49 convolutional layers and a fully connected layer at the end
of the network. To saving computing resources and training
time, ResNet 50 was chosen for the comparison in later
section.

3) MobileNets: There are three versions of MobileNets, the
latest, MobileNet V3. The core architecture of MobileNetV1
is based on a streamlined architecture that uses depth-wise
separable convolutions to build lightweight deep neural net-
works [9]. MobileNetV2 introduced two new features to the
architecture: linear bottlenecks between the layers and shortcut
connections between the bottlenecks [10]. MobileNetV3 [11]
is the third version of the architecture (figure 3), powering the
image analysis capabilities of many popular mobile applica-
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Fig. 3. MobileNet V3 building block [12]

tions. The main contribution of MobileNetV3 is the use of
AutoML to find the best possible neural network architecture
for a given problem. This contrasts with the hand-crafted
design of previous versions of the architecture.

4) MnasNet: The main building block of MnasNet [13]
is an inverted residual block (from the above-mention Mo-
bileNet V2). Inspired by recent progress in AutoML neural
architecture search, the MnasNet architecture search approach
for designing mobile models using reinforcement learning. The
overall flow of the approach consists mainly of three com-
ponents: an RNN-based controller for learning and sampling
model architectures, a trainer that builds and trains models to
obtain accuracy, and an inference engine for measuring the
model speed on real mobile phones. MnasNet does a multi-
objective optimization problem that aims to achieve both high
accuracy and high speed.

5) EfficientNets Lite: EfficientNet-Lite [14] brings the
power of EfficientNet[15] to edge devices and comes in five
variants, allowing users to choose from the low latency/model
size option (EfficientNet-Lite0) to the high accuracy option
(EfficientNet-Lite4). Some of the operations in EffcientNet
are not well supported by certain accelerators. To address the
heterogeneity issue, the original EfficientNets were tailored
with the following simple modifications:

• Removed squeeze-and-excitation networks since they are
not well supported.

• Replaced all swish activation with RELU6, which signifi-
cantly improved the quality of post-training quantization.

• Fixed the stem and head while scaling models up to
reduce the size and computations of scaled models.

IV. PERFORMANCE METRICS AND MODELS EVALUATION

A. Benchmark environment

In our work, the performance of DL models was assessed
on the Raspberry Pi 3 Model B [16]. Despite its limited
resources, this low-cost embedded platform features enough
computational power for real-time DNN inference. It has a
Quad-Core ARM Cortex-A53 1.2GHz 64-bit CPU that can
work at frequencies ranging from 700 MHz up to 1.2 GHz.
Its instantaneous value depends on the policy set by the user
and the operation conditions: CPU load, temperature, etc.
The system incorporates 1GB RAM LPDDR2 at 900MHz.
Likewise, to reduce the impact of the operating system on the
performance, the booting process of the RPi was configured to
prevent needless processes and services from being started. We

Fig. 4. Some of the plant diseases from the PlantVillage dataset [19]

also disconnected all peripherals during the characterization.
The framework we use to train and evaluate these models
is TensorFlow Lite [17]. TensorFlow Lite is a set of tools
that enables on-device machine learning by helping developers
run their models on mobile, embedded, and IoT devices.
Optimized for on-device machine learning, by addressing 5
key constraints: latency (there’s no round-trip to a server),
privacy (no personal data leaves the device), connectivity
(internet connectivity is not required), size (reduced model
and binary size), and power consumption (efficient inference
and a lack of network connections).

B. PlantVillage Dataset

The datasets we use in this work is PlantVillage [18]
were gathered from Kaggle. The data records are available
through the website www.plantvillage.org. The dataset consists
of 54303 healthy and unhealthy leaf images divided into
38 categories by species and disease. The images span 14
crop species: Apple, Blueberry, Cherry, Corn, Grape, Or-
ange, Peach, Bell Pepper, Potato, Raspberry, Soybean, Squash,
Strawberry, Tomato. It contains images of 17 fungal diseases,
4 bacterial diseases, 2 molds (oomycete) diseases, 2 viral
diseases, and 1 disease caused by a mite. 12 crop species also
have images of healthy leaves that are not visibly affected by
a disease. Figure 4 below is an example of different phenotype
plants.

C. Evaluation

For performance evaluation and comparison, we used
Python as the common coding language for all of the DNN
models. The Benchmark tool in this work is the TensorFlow
Lite benchmark tool [20]. This tool currently measures and
calculate statistics for the following important performance
metrics:

• Initialization time
• Inference time of warm-up state
• Inference time of steady-state
• Memory usage during initialization time
• Overall memory usage

Moreover, the parameters we recorded in the training process
are also given for evaluation:

• Accuracy
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Fig. 5. Accuracy in comparison.

• Number of parameters
• Size of model
• Training time with GPU

The neural network architecture is implemented in TensorFlow
Lite. For pre-training, we used ImageNet [21] weights for each
of the models. The input shape of the leaf images is 256 ×
256 × 3 and was resized into 224 x 224 x 3. In [22], [10],
[11], [13], authors perform models as a function of different
multipliers and resolutions. In their experiments, they have
used multipliers 0.35, 0.5, 0.75, 1.0, and 1.25, with a fixed
resolution of 224, and resolutions 96, 128, 160, 192, 224,
and 256 with a fixed depth multiplier of 1.0. We evaluate all
models with the depth = 1.0 and resolutions = 224 x 224, and
further work in section V, we will discuss scaling down depth
of models. We train our models using NVIDIA GEFORCE
GTX 1080TI [23] with 11GB GDDR5X VRAM and 3584
CUDA Cores based on the NVIDIA Pascal – architecture.
Accuracy: To compare the result, we use Plant Village Dataset
for all classification experiments and compare the accuracy
versus various measures of resource usage such as latency,
number of parameters, storage, and memory. The results
are shown in figure 5. The results show that MobileNetV3
achieves the highest accuracy of 96.58%, 0.28% higher than
the second place, EfficientNet Lite 0 (96.3%). The common
point of these two networks is having the automatically de-
signed Neural Architecture Search (NAS) [24], NetAdapt[25]
algorithms, and inherit blocks with increasingly optimized
structure for Edge/Mobile Device. Because of that, these two
outperforming other hand-designed common network archi-
tectures such as InceptionNets 94.29%, ResNets 95.51%, or
MobileNetV3’s predecessors, MobileNetV2 and MobileNetV1
reach 95.56% and 93% respectively. Meanwhile, EfficientNets
Lite uses the lightest EfficientNet B0 model and model scaling
technique to scale down and find the variants of EfficientNets
Lite while still achieving high accuracy and optimized FLOPS
parameter. With MobileNetV1, it simply improves the classical
convolution without many optimizations on network archi-
tecture. MobileNetV2 has improved with Linear Bottleneck
Block and Residual Block [11] but designed manually and
not guaranteed to be optimal. We also need to consider a
significant offset of the search effort in the large/extremely

Fig. 6. Memory usage in comparison.

large search space. With MnasNet, the results obtained in
terms of accuracy are quite limited even though the network
architecture is searched by NAS, but because the reward for
the controller is not optimal in Multi-Objective. There is also
no method to evaluate the most suitable model obtained from
search results such as in NetAdapt.
Memory usage: In studies [26], [27], [28], [29], [30], Integer
quantization is an optimization strategy that converts 32-
bit floating-point numbers (such as weights and activation
outputs) to the nearest 8-bit fixed-point numbers. This results
in a smaller model and increased inferencing speed, which
is valuable for low-power devices such as microcontrollers.
Memory accesses contribute significantly to the energy con-
sumption of DNNs [31] [32]. Therefore, after training DNNs
models are optimized by parameter quantization, which will
reduce hardware resources, memory usage, reduce computa-
tional costs, and consume less energy. To build low-power
DNNs, recent research has investigated the trade-off between
accuracy and the number of memory accesses. Figure 6 shows
the memory using the models evaluated in the article. All
models in the article are compressed as int8, the RAM usage
of the models when compressed int8 is acceptable, with
MobileNetV3 outperforming other architectures when using
only 4,972MB in model initialization process and 7.4MB total
in 1GB RAM of the RPi 3B. MobileNetV2 and EfficientNet
Lite 0 also give a reliable result when they take up only
8,136MB and 9.88MB of total memory usage, respectively.
The number of parameters: Figure 7 shows the result of the
number of parameters of each network. The MobileNetV3’s
number of parameters is the smallest compared to other
network architectures (1.5 million), outperforming popular
network architectures that are not optimized for Edge/Mobile
such as ResNet 50 (23.6 million) and InceptionV3 (21.8
million).
Size of models: Parameters quantization can be used to reduce
the size of the model. The smaller models have the following
benefits:

• Smaller storage size: Smaller models take up less storage
space on the user’s device.

• Smaller download size: Smaller models require less time
and bandwidth to download to the user’s device.
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Fig. 7. Number of parameters in comparison in comparison.

Fig. 8. Size of models.

• Less memory usage: Smaller models use less RAM
as they are run, which frees up memory for use by
other parts of your application and can translate into
performance and stability better determination.

The results of the quantization get the size of the DNNs
models as shown in figure 8. The models specially designed for
Edge/Mobile are MobileNets, MnasNets, EfficientNets Lite,
which are parameterized and optimized for memory, and the
model size is better than the commonly used DNNs.
Inference time: Latency is the amount of time it takes to run a
single inference with a given model. Some form of optimiza-
tion can reduce the amount of computation needed to run the
inference using the model, resulting in lower latency. Latency
can also have an impact on power consumption. Quantization
is a conversion technique that can reduce model size while also
improving CPU and hardware accelerator latency, with little
degradation in model accuracy. Currently, Model Quantization
can be used to reduce latency by simplifying computations that
occur during inference, potentially at the expense of some
precision. The results below in figure 9, MobileNetV3 still
gives the most satisfactory results.
Initialization time: The comparison result is demonstrated

in figure 10.
Training time: The evaluated models are pre-trained on

the standard ImageNet dataset and transfer learning to the
PlantVillage dataset with a few dropout layers and dense layers
added. From which we have quite fast training time results
with GPU: GTX 1080TI 11GB as shown in figure 11 below.

Fig. 9. Inference time in comparison.

Fig. 10. Initialization time in comparison.

V. CONCLUTION AND DISCUSSION

The presented benchmark is anticipated to serve as a pre-
liminary reference when it comes to selecting DNN models
among the broad ecosystem of DL components available. We
have demonstrated that a cheap embedded computer like Rasp-
berry Pi 3 Model B is capable of implementing real-time vision
inference on the basis of complex DNN models. Thereby,
this paper promoting new and more extensive research into
integrating microcontrollers in the Edge Intelligence system.
In section IV, a comparative analysis and performance evalu-
ation was performed among SOTAs of modern deep learning
architectures for edge/mobile devices. The performance of

Fig. 11. Training time in comparison.
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TABLE I
SCALE-DOWN MODEL

MobileNet V3 depth=1.0
input=224x224

depth=0.35
input=96x96

Accuracy 96.58% 94.4%
Memory usage
(init/overall)

4.972 MB / 7.4 MB 4.464 MB / 5.644 MB

Time reference
(init/overall)

0.127 s / 0.169 s 0.045 s / 0.043 s

Time init 11.012 ms 0.815 ms
Time training 752 s 166 s

Model size 2 MB 797 KB
Number of parameters 1.5 M 0.4 M

different models for each type of hardware may vary, so a
model structure that is compatible with the hardware will result
in better performance. According to our evaluation results,
MobileNetV3 gives better results than the models evaluated
with the pest data set on the Raspberry Pi 3 Model B. We
also experiment with scaling down the depth of MobileNetV3
and reducing the resolution for smaller edge device/mobile to
processing for a low-quality image and limited computational
resources. The results are shown in Table 1. The scaled-
down MobileNetV3 provides reliable accuracy of 94.4% while
consumes an impressively small amount of resources, both
time and memory.
In the future, we will expand our research further on Com-

puter Vision and Machine Learning that can be deployed on
microcontrollers. For practical implementation, we will also
further evaluate energy usage, temperature, and stability under
different environmental conditions in agriculture to empirically
evaluate a stable system in future studies.
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