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Abstract — This paper presents a method of designing a 

positional stability control system for the Reaction Wheel 

Pendulum. The Reaction Wheel Pendulum is a single-input, 

multiple-output (SIMO) nonlinear system. The state 

feedback controller is designed for this system by choosing 

the distribution of the solutions of the above characteristic 

polynomial in the solution space. This original distribution is 

optimized by the BAT algorithm through the ITAE objective 

function. The results of the synthetic control law are proven 

through simulation results and comparison with other 

control laws. The effectiveness of the rule with optimized 

parameters is also shown in the results on the embedded 

control system. 
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I. INTRODUCTION 

The reaction wheel pendulum (RWP) is one of the 
nonlinear systems, which is made up of a combination of 
an reaction wheel pendulum. A balanced gyro system 
consists of a pendulum rod with one end fastened to a free 
axis so that the rod can rotate freely along that axis. The 
other end of the pendulum rod is fastened to a motor, 
which is attached to a reaction wheel. The control purpose 
of this system is to use the torque generated by the reaction 
wheel to stabilize the pendulum in a vertical position. Like 
other nonlinear systems such as the inverted pendulum [1], 
ball stick [2], pendubot [3]…, the balance gyroscopic - 
reaction  wheel system [4] is also a highly nonlinear 
system, which is difficult to control and has a SIMO 
structure, i.e. the system has one control variable and two 
joystick variables (the control variable is the torque 
generated by the movement of the moving reaction  wheel, 
the two joystick variables are the angle pendulum φ and 
reaction  wheel angle θ as shown in Figure 1). The control 
target to maintain local stability around the equilibrium 
position has been published in many studies. In [5], a 
traditional PID controller was introduced that stabilized the 
system at the equilibrium position. The LQR controller 
designed for this system in the study [6, 7] gives relatively 
good results. In order to overcome the external noise and 
uncertainty of the model parameters, the fuzzy logic 
approach is presented in [8, 11]. Many nonlinear control 
laws have been proposed in many studies such as: slip 
control described in [9] and feedback linearization used in 
[10]. Although the quality of the system control is very 
good, the control law is often complex and affected by the 
uncertainty of the system. In the study [12], a linear state 
feedback controller was designed. This control law can 

work well around the operating point; However, the 
optimal determination of the poles of the characteristic 
polynomial has not been considered. 

 

Fig. 1. Model of a Reaction Wheel Pendulum 

The controller parameter optimization techniques are 
presented in the studies [13,14]. But with highly nonlinear 
system and multivariable objective function, this technique 
does not give good performance. The optimization 
algorithm based on Nature-Inspired Metaheuristics is a 
strong development trend. There have been many 
optimization algorithms successfully built from the 
behavior of animals and have been widely published such 
as: genetic algorithms (GA), ant colony optimization 
(ACO), bat algorithms (BA), bee algorithms, differential 
evolution (DE), particle swarm optimization (PSO), 
harmony search (HS), the firefly algorithm (FA), cuckoo 
search (CS), and the flower pollination algorithm (FPA), 
and others [15,16].  

This paper presents a method to design a state feedback 
controller by assigning poles and optimizing its set 
parameters by using the BAT algorithm based on the ITAE 
objective function. The controller results are illustrated by 
simulation on the software and test running the controller 
on the real system. The efficiency of the optimized control 
law is shown when compared with some traditional 
linearized feedback control laws. 

II. MATHEMATIC MODEL  REVERSE SYSTEM WITH 

RED WHEEL 

The Reaction Wheel Pendulum has two degrees of 

freedom and the angular coordinates of the pendulum   



and θ of the reaction wheel (    ) as shown in 

Figure 1. 

System parameters: ; ( ) / ;p r p p r rm m m l m l m l m     
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Where: mr = 0.3 - Weight of reaction wheel (kg); mp=1.0 - 
Weight of pendulum (kg); lp=0.28 - Distance from the 
shaft to the center of mass of the pendulum (m); lr - 0.3 - 
Distance from the axis of rotation to the center of mass of 
the reaction wheel (m); l - Distance from the shaft to the 
center of mass of the pendulum and rotor (m); Jp - 
Moment of inertia of the pendulum (kg/m

2
); Jr - Moment 

of inertia of the wheel (kg/m
2
); θ - reaction wheel 

deflection angle (rad); φ - angle of deflection of the 
pendulum (rad); g - Acceleration due to gravity (m/s

2
); 

mp=1.0(kg); mr=0.3(kg); lp=0.28 (m); lr= 0.3 (m); Jp= 
0.28 (m);  Jr= 0.28 (m)  and  g= 9.8 (m/s

2
) 

The kinetic energy T of the system is the sum of the 
kinetic energy of the pendulum and the kinetic energy of 
the reaction wheel and can be written as the above 
quantities: 
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The potential energy V of the system is only due to 
gravity, ignoring the elasticity of the pendulum: 

    cosV mgl                                           (2)     

It is clear that the potential energy of the system does not 
depend on the reaction wheel position because the mass of 
the reaction wheel is distributed symmetrically about its 
axis of rotation. Using the Lagrange equation [7] for this 
system, we have the following Lagrange function of the 
system: 
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Taking the partial derivative of the Lagrange function for 
each variable, we have: 
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In this case, the torque produced by the motor τ acts on the 
reaction wheel and - τ acts on the pendulum. Neglecting 
the friction force and the electromotive force of the DC 
motor, the torque is given by: 

                                  k I                                            (5) 

where k is the torque constant of the motor and I is the 
motor amperage. From Equation 4 we get: 
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Convert the system of equations (6) to the system of state 

equations with 1 2 3; ; ;x x x      when linearizing at 

the equilibrium point, we get equation (7): 
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and u I . 

Equation (7) with a control signal as input (current I), two 
signals as pendulum deflection and reaction wheel 
rotation as output, represents a SIMO nonlinear system 
with one input and two outputs. 

III. BASICS OF BAT ALGORITHM 

The standard bat algorithm was developed by Xin-She 
Yang [16]. The main characteristics in the BA are based on 
the echolocation behavior of microbats. As BA uses 
frequency tuning, it is in fact the first algorithm of its kind 
in the context of optimization and computational 

intelligence. Each bat is encoded with a velocity 
t
iv  and a 

location 
t
ix , at iteration t, in a d - dimensional search or 

solution space. The location can be considered as a 
solution vector to a problem of interest. Among the n bats 

in the population, the current best solution *x  found so far 

can be archived during the iterative search process. 

Based on the original paper by Yang, the mathematical 

equations for updating the locations 
t
ix  and velocities 

t
iv  

can be written as: 
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where β ϵ [0; 1] is a random vector drawn from a 
uniform distribution. 

In addition, the loudness and pulse emission rates can 
be varied during the iterations. For simplicity, we can use 
the following equations for varying the loudness and pulse 
emission rates: 

1t t
i iA A   and    1 0 1 exp( ) ,t

i ir r t     

where 0 < α < 1 and γ > 0 are constants. 

The pseudo code of the basic bat algorithm is presented 
in Algorithm 1. The main parts of the bat algorithm can be 
summarized as follows: 

First step is initialization (lines 1-3). In this step, we 
initialize the parameters of algorithm, generate and also 
evaluate the initial population, and then determine the best 

solution bestx  in the population. 

Algorithm 1 Original BAT algorithm 

Input: Bat population xi=( xi1, …, xiD) for i = 1…Np 
MAX_FE 

Output: The best solution xbest and its corresponding 
value  fmin= min(f(x)). 

1 : init_bat() ; 



2 : eval=evaluate_the_new_population ; 

3 : fmin=find_the_best_solution(xbest) ; {initialization} 

4 : while termination_condition_not_meet do  

5 :  for i=0 to Np do 

6 :        y= improve_the_best_solution(xbest); 

7 :        if rand(0,1)>ri then 

8 :   y= improve_the_best_solution(xbest); 

9 :        end  if {local search step} 

10:       fnew=evaluate_the_new_solution(y); 

11:       eval=eval+1 ; 

12:       if fnew ≤ fi and N(0,1)< Ai then  

13:            xi = y ; fi = fnew ; 

14:        end if {save the best solution conditionally} 

15:      fmin = find_the_best_solution (xbest); 

16:        end for 

17:  end while 

  The second step is: generate the new solution (line 6). 
Here, virtual bats are moved in the search space according 
to updating rules of the bat algorithm. 

Third step is a local search step (lines 7-9). The best 
solution is being improved using random walks. 

In forth step evaluate the new solution (line 10), the 
evaluation of the new solution is carried out. 

In fifth step save the best solution conditionally (lines 
12-14), conditional archiving of the best solution takes 
place. 

In the last step: find the best solution (line 15), the 
current best solution is updated. 

IV. DESIGN A STATE FEEDBACK CONTROLLER 

WITH POLE ASSIGNMENT METHOD AND 

PARAMETERS OPTIMIZATION USING BAT 

ALGORITHM FOR RWP 

The state feedback control structure diagram for RWP 
system has the form as shown in Figure 2. The design of 
state feedback control law using pole assignment method 
with parameter optimization by BAT algorithm consists of 
two stages: (i) Design state feedback controller by pole 
assignment method; (ii) Optimizing the controller 
parameters of the control rule by the BAT algorithm. 

 

Fig. 2. Diagram of control structure RWP parameter adjustment by 

BAT algorithm 

A. Synthesis of feedback control law with parameter 
optimization by BAT algorithm. 

Consider a control system in the form of a system of 
state equations as (7). From the block diagram of the 
system shown in Figure 2 with state feedback control has 
the following form: 

        u Kx                                                (8) 

where K is a constant feedback gain vector. The input to 
the control system is assumed to be zero. The purpose of 
this system is to return all states to zero when the states 
are perturbed. Then, the closed-loop system according to 
the control law (8) is 

      ( )x A BK x                                      (9) 

The fully closed-loop dynamics are determined by the 
matrix (A - BK), and the stability of the closed-loop 
system and the rate of adjustment of x to zero are 
determined by the eigenvalues of this matrix, are called 
the poles of the closed-loop system. In particular, system 
(9) is (asymptotically) stable if and only if all the 
eigenvalues (s) of the matrix (A-BK) are in the domain 
Re(s) < 0. So, from the system of equations (9) we use 
Laplace transform to get the characteristic polynomial of 
the system of the form r(s) = det( sI-A+BK), we get: 
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For asymptotically stable system (10) we will choose 
the eigenvalues of (A - BK) for a given pair (A, B). That is, 
the characteristic polynomial has the form R(s) = (s-λ1) (s-
λ2) (s-λ3). With the roots of the characteristic polynomial 
selected as follows: λ = [-2+j  -2+j  -3] - where j is an 
imaginary number. Identifying the parameter with the 
characteristic polynomial (10) with R(s), we get the 
matrix K as follows: 

          0.0865 0.0066 0.0002K               (11) 

But the choice of eigenvalues or solutions λ of the 
characteristic polynomial (10) depends on the dynamic 
properties of the system. Therefore, determining the 
solution to improve control quality requires a deep 
understanding of the control object as well as the effects 
caused by noise. 

For the purpose of reducing the transition time of the 
response of state variables, keeping the static error zero 
for all states, we propose an objective function of the form 
that is the integral function of the product of squares of 
time and the sum of all states absolute error has the form. 

    2

1 2 3: ( ) ( ) ( )ITAE F t e t e t e t dt             (12) 

Where ei(t) = xi-0 with i = 1:3. 

The algorithm to optimize controller parameters 
through three coefficients K1, K2, K3 is implemented by 
the BAT algorithm. The steps of the algorithm to find the 
value of the parameter set by the BAT algorithm include 
the following steps: 

1. Initialize the population of bats (n) with the 
loudness (A) and pulse emission rates (r), the bats have 



random position (xi) and velocity (vi) for all 3 parameters 
K1, K2, K3. 

2. Calculate the value of the ITAE objective function 
of all bats in the initial population. 

3. Compare the values of the objective function just 
found to find the bat (xbest) for the best objective function 
value. 

4. Update pulse frequency Q and velocity v of all bats 
according to the following equation: 

1 min min max

1 1
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k

k k k best k

Q Q Q Q rand

v v x x Q
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5. Update the positions of all bats according to the 
following equation: 

1k k kx x v    

6. Update the position of the bat if the pulse width (r) 
is less than the pulse width of the randomly generated 
signal (rand). 

1

if ( )

.
k

new

best

rand r

x x rand



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7.
 

Check the condition, 

1 1( & ( ) ( ))
k

new

krand A f x f x
   , acceptance new 

population and increase the pulse width (r) and reduce the 
echo (A).  

8. Check if the best value of the new position in the bat 
population is less than the required value (fmin), then the 
algorithm terminates, otherwise repeat step 4. 

To optimize the controller's parameters, the authors 
choose the optimal solution which is to bring the 
pendulum from the initial position X0 = [0.02 0 0]T to the 
equilibrium position [0 0 0]T in 4(s) such that the 
objective function value is less than 3 (fmin = 3). The initial 
controller parameter value is selected at (11). Initial data 
for the BAT algorithm include: Number of bats: 30 (bats), 
magnitude A = 0.3 and pulse rate r = 0.3. After optimizing 
the controller with the above conditions, we get: 

        0.6392 0.0851 0.0366K                   (13) 

The solution of the characteristic polynomial of the 
system is: 

 6.9236 5.6084 6.9236 5.6084 39.1409 .j j      
 

From the found solutions, it is clear that the real parts of 
the solutions are negative, so the system is asymptotically 
stable. 

B. LQR optimal control law for RWP 

From the system of linear equations of state (10), we need 
to find the matrix K of the optimal control value: 

 

( ) ( )u t KX t 
 

satisfying quality norm J reaching the minimum value: 
 

0

( ) .T TJ X QX u Ru dt
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Where Q is a positive determinant (or semi-positive), R is 
the positive determinant matrix. The optimal K matrix is 
defined by the Riccati equation of the form: 

 

1 .TK R B P  
The matrix P must satisfy the equation Riccati: 

 

                    1 0T TPA A P Q PBR B P                  (14) 

The control law with the system parameter as above 
receives the control law according to the LQR method 
with matrix values Q and R:  
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We receive: 1 2 3( ) 2.0843 0.( )  ( )2543   ( ) 0.1x tu t x t x t    .  

V. SIMULATION AND EXPERIMENTAL RESULTS  

A. Simulation results 

Perform system simulation on Matlab software. 
Figures show the response of the inverted pendulum 
deflection angle (Fig. 3), the response of the inverted 
pendulum angular velocity (Fig. 4) and the reaction wheel 
pendulum speed (Fig. 5) when the initial value of the 
system is out of position. equilibrium position 0.02 (rad.) 
with 3 different control rules: Method-PP- response with 
feedback control law assigning poles; Method-LQR- 
responds to the LQR control law and Method-PPBAT 
responds to the proposed control rule. From the results of 
the deflection angle response, it is clear that the transient 
time of the parameter optimized controller (0.526 s) is 
better, compared to the other controller: LQR (0.6 s), 
PPBAT (2.6 s). Although the deflection angle response 
has a higher overshoot (Fig. 3), the angular velocity 
response (Fig. 4) and the reaction wheel velocity (Fig. 5) 
have a smaller overshoot. 
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Fig. 3. Inverted pendulum angle response 
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Fig. 4. Angular velocity response of the inverted pendulum 
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Fig. 5. Reaction wheel pendulum  speed response 

B. Experimental results 

The controller is run in real time on the model made 
by the author's team (Fig. 6), Arduino Mega 2560 
Embedded Board, H7A bridge circuit, the sensor is two 
incremental encoders 600 pulse and 24V, 25W, 3000rpm 
DC motor. 

 
Fig. 6. Experimental model of the reaction wheel pendulum 

To monitor, calibrate the system and store embedded 
data, the author has also designed an interface to connect 
to the embedded system through RS232 serial 
communication using Lab view software. The software 
interface is shown in Figure 8. 

The results of running the experimental model after 
building an embedded control system using the proposed 
controller are shown in Figure 7, 8: 

 

Fig. 7.  Stable experimental model when using the proposed controller 

 
Fig. 8.  Results on the computer interface of the experimental model 

Figure 8 shows the results when stabilizing the 
pendulum when deviating from the working point by an 
angle of 0.1 (rad). From the results, we see that the 
pendulum is stable at the desired position, but the reaction 
wheel is still spinning due to the relative encoder, so 
determining the vertical position is not accurate.  

CONCLUSION 

In the study, synthetic state feedback controller 
controllers with parameter optimization for RWP were 
presented. By using the BAT algorithm with the proposed 
objective function, the authors found a better set of 
parameters with transient time and systematic static error 
than parameter selection by assigning parameters. pole. At 
the same time, the results compared with the LQR 
controller give better results in terms of transient time and 
amplitude of oscillation. To demonstrate the efficiency of 
the controller is synthesized. The authors have designed 
the above control rule for an embedded RWP system. The 
test results show the controller's performance on the 
integrated embedded system. The error responds well to 
the requirements of the real system. In the next studies, 
the authors will propose solutions to build a fast-acting 
nonlinear controller to improve the control system quality 
for the magnetic elevator system and improve the 
embedded control system for better performance. 
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