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Abstract—This paper presents a system using artificial in-
telligence deployed on ESP32-Cam to conduct OCR on water
meter readings. Data transmission through LoRa technology
helps reduce overall system power consumption. The accuracy of
digit classification tasks reaches up to 98%. The average current
consumption in active and sleep mode is 107 mA and 1 uA,
respectively. With these specifications, the proposed system is
proved to be low-power, low-cost and has a long-lasting operating
time.

Index Terms—LoRaWAN, Water Meter, Deep Learning, Low
Power, Image Processing In C/C++

I. INTRODUCTION

In the past, high resource-demanding and complicated tasks
such as Al algorithms are often done on high performance
computing servers. With advanced development in open source
software and IC design technology, more and more embedded
boards with complex computing power are created. These
integrated circuits are not only low-power, low-cost but also
designed to adapt and deploy high accuracy signal processing
techniques or complicated algorithms without the Internet con-
nection. These advanced innovations open a new opportunity
to run Al algorithms - here also known as inference - directly
on embedded devices with limited resources.

There are several papers about smart water meters. In [1]
and [2], reed switchs are used to gather meter data. This
technique requires physical invasion into the water meter.
Therefore it is hard to deploy in some areas with strict local
policies. Article [3] replaces the traditional mechanical water
meter (read by a human operator) with a digital one, leading
to an increase in replacement cost. These disadvantages are
resolved in [4]. This paper captures an image of the water
meter’s dial face and then sends it to the cloud to process.
This solution does not require changes to the water meter’s
structure. Digit classification accuracy is high with the help

of powerful cloud computing. However, the system requires
a stable internet connection which leads to an increase in
power and processing time. Cloud servers can have vulnera-
bilities that pose concerns to the privacy and integrity of data.
Researches [5], [6] overcome above limits. However, study
[5] has a low accuracy with underexposed or overexposed
captured images. These studies only show results about OCR
tasks without long-range data communication method or low-
power design. Therefore, the overall power consumption is not
optimized, and the lifetime of the system will decrease. This
drawback limits the ability to deploy in widespread use.

A good water meter reading device has to balance energy
consumption, image processing - Al tasks, and communication
ability. Datalink also needs high stability, wide range coverage,
high capacity while still low power. There are low-power
wireless standards commonly used, such as BLE, Zigbee,
ANT+, LoRa,... [7]. BLE is a widely-used low-power wireless
standard [8]. Zigbee is designed as a range-scalable wireless
standard with mesh protocol [9]. ANT+ is a low-power
protocol based on a proprietary protocol which is used for
monitoring application, especially for the multicast scheme
[10].

LoRa is Semtech’s technology for low-power, wide area
networks (LPWANSs). This modulation technique is known
for low power consumption and wall penetration. Besides,
this technology has some advantages such as high capacity
potential, robustness against interference and noise,... [11]-
[13]. However, LoRa has low data rates so applications using
this technology has to optimize their packet size. In [14], the
authors design an optical reader kit for a traditional water
meter. This device takes a snapshot of the meter’s consumption
wheel, converts to grayscale and transmits the image to a LoRa
Gateway. Although being preprocessed, a grayscale image still
has a large data size. Transmitting this kind of data through



LoRa technology will lead to a significant increase in transmit
time, packet dropout rates, and a decrease in the reliability and
lifetime of the system.

This paper proposes utilizing some image processing algo-
rithms and a custom convolutional neural network (CNN) for
embedded devices. These techniques are deployed on ESP32-
cam to conduct OCR on water meter readings before sending
to LoRa Gateway through LoRaWAN protocol. ESP32-Cam
plays a role as a single-end device in a LoRa-adopted low-
power wide area network.

II. SOLUTION

A. Hardware Design
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Fig. 1: Hardware design
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The system in Fig. 1 is controlled by two microcontrollers.
Therefore the device is devided into two function blocks.
Block A: Time management and power control unit

o Attiny44 uses I12C to set the alarm time in IC DS3231.
DS3231 interrupts Attiny44 to wake up once a month.
Then, Attiny44 sleeps in the remaining time.

o Attiny44 controls the enable pin of IC PT5108 to turn
on/off the power of block B.

Block B: Image preprocessing and Al inference unit

o ESP32-Cam takes photos, preprocesses, and saves them
to MicroSD card. This set of images is the dataset for
training the CNN on Google Colab.

o A deep learning model trained on Google Colab is put
into ESP32-Cam memory. ESP32-Cam takes a photo,
preprocess, and uses this model to make an inference.

o ESP32-Cam uses SPI with REM95W board to send out
predicted water meter readings. A LoRa Gateway collects
these data from all devices within a range of up to many
kilometers and then sends them to the internet server of
The Things Network (TTN).
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Fig. 2: Operating flowchart

Fig. 2 presents the operating flowchart of the device. The
first system start-up date is used as wake-up time in the
following months. Attiny44 clears the alarm flag in DS3231,
if it is available. The enable pin of LDO PT5108 is driven to
high state to turn on the power of block B. ESP32-Cam takes
and preprocesses photo, makes an inference, and then sends
to The Things Network server through LoRa Gateway.

When the transmission is done, Attiny44 then turns off
PT5108’s enable pin to cut down the power of block B.
Attiny44 reads time stored in DS3231, sets the alarm for one
following month, and goes to sleep. When there is an alarm
signal from DS3231, Attiny44 wakes up, clears the alarm flag,
and the loop starts again.

B. Image Preprocessing
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Fig. 3: Image preprocessing flowchart

Fig. 3 illustrates the operation of preprocessing image.
ESP32-Cam captures an image of the water meter’s dial face
in JPEG format at 1024x768 size. Image is converted to
grayscale. The image is cropped and rotated to the correct
angle as shown in Fig. 4. Then five distinct digit images of
water meter reading are cut out in the loop to preprocess.

Fig. 4: Image augmentation

Each digit number is blurred to reduce contrast noise in
the histogram equalization step. This paper resolves the limit
mentioned above when classification accuracy drops to about
70-80% in different light conditions. Histogram Equalization
algorithm helps balance contrast effectively [15]. Image fea-
tures remain almost the same in different light conditions as
shown in Fig. 5. Image is binarized after going through the
histogram equalization step.
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Fig. 5: Effect of histogram equalization in different light
conditions



Erosion helps reduce minor white noise on the image. The
black background, which is considered a redundant feature of
the image is cropped out automatically in Fig. 6.
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Fig. 6: Effect of auto cropping algorithm with & without

erosion

Images in this final step are used as a training dataset in
Google Colab. Image captured by ESP32-Cam is preprocessed
to this state before making inference.

C. Convolutional Neural Network

TABLE I: Proposed Convolutional Neural Network

Type [ Num of kernels | Size/Stride/Padding | Activation

Input (width x height x channel): 40 x 30 x 1

Convolution 1 | 4 [ 4x3/1/7valid ] relu

Dropout (rate = 0.1)

Max Pooling 2 x 2 / none / valid

Convolution 2 2 2x2/1/valid relu

Max Pooling 2 x 2/ none / valid

Convolution 3 4 3x4/1/valid relu

Dropout (rate = 0.2)
[ 2x2/none/valid |
Flatten
Dense (units = 80, activation = relu)
Dense (units = 40, activation = softmax)

Max Pooling |

The network in Tab. I consists of two convolutional layers
and one max-pooling layer. Input is resized to 40 x 30 x 1
to reduce ram usage since ESP32-Cam is ram-limited. There
are only three convolutional layers, so the network uses two
fully connected layers (dense) to increase neural connections,
which helps increase the model’s performance. The network
uses Dropout layers to prevent overfitting. Sparse Categorical
Crossentropy loss function with Adam optimizer is used for
the network. The learning rate is 0.001 and the batch size is
64. The network model consumes 99.4 KB on ESP32-Cam’s
flash memory.

The output of H-CNN represents 40 classes for integers (0,
1, 2, ..., 9), half-digit values between each consecutive number
(Ob, 1b, 2b, ..., 9b) and values between integers and half-digits
(Oa, Oc, l1a, lc, ..., 9a, 9c) as shown in Fig. 7.
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Fig. 7: Example for digit labels from 2 to 3

ESP32-Cam captures 2744 preprocessed samples. The ratio
of the training/validate/test set is 70%:15%:15% per class. This
dataset is imbalanced since integer images are captured more
frequently than the others (e.g. half digits,...). In order to get
high accuracy on this model, image augmentations (erosion,
dilation, width/height shifting) are applied on the training set
to balanced the number of samples per class. The final number
of the three training/validate/test sets are 8680, 411, 412,
respectively.

III. RESULT

A. Deep Learning Model Performance

The average accuracy score on the test set of the network in
Tab. I is 98,204% with a standard deviation of 0.929%. Fig.
9 show the training graph and distribution box of accuracy
scores with whisker plot of Tab. I.
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Fig. 8: Training graph, distribution of accuracy scores

B. Power Consumption

TABLE II: Average current consumption per operating mode

Operating mode  Supply voltage  Operating time ~ Min current  Avg current  Max current

Active 3.7V 69 s 33 mA 108 mA 214 mA
33V 69 s 33 mA 107 mA 210 mA
Sleep 3.7V 1 month 0.53 uA 1.42 uA 242 uA
33V 1 month 0.21 uA 1 uA 1.95 uA

The device is powered by an input voltage of between
approximately 3V and 4V. Therefore measures in Tab. 2
are taken between these voltage levels. At 3.7V, the device
consumes 108 mA in active mode. The lowest current is 0.53
UuA in sleeping mode, and the highest is 2.42 uA, with the
overall average current consumption is 1.42 uA. At 3.3V, the
device consumes 107 mA in active mode. The lowest current
is 0.21 uA in sleeping mode, and the highest is 1.95 uA, with
the overall average current consumption is 1 uA. The above
measurement is taken multiple times separately to calculate
the total average values. The Tab. 3 and Fig. 9 below indicate
power per task at one-time measurement only.



TABLE III: Average current consumption per task

Number Task Time | Avg current
0 Boot device 115 s 60 mA
1 Initialize TensorFlow and flashlight driver 10 ms 63.9 mA
2 Initialize camera driver 620 ms 85 mA
3 Capture image 140ms 126 mA
4 Convert image frame to RGB888 1.67 s 129 mA
5 Convert image (o grayscale 390 ms 128 mA
6 Crop out zone around digit area 110 ms 125 mA
7 Rotate image 360 ms 126 mA
3 Crop out image of 1% digit 0 ms 129 mA
9 Blur 1% digit 100 ms 129 mA
10 Equalize histogram, binarize, erode 1™ digit 30 ms 129 mA
11 Auto crop out redundant black background of 1™ digit 10 ms 129 mA
12 Make inference for 1% digit 40 ms 129 mA
3 Crop out image of 2" digit, preprocess the same steps as 1% digit, make inference | 190 ms | 1284 mA
14 Crop out image of 31 preprocess the same steps as I digit, make inference | 190 ms | 128.25 mA
15 Crop out image of 4™ digit, preprocess the same steps as 1% digit, make inference | 190 ms | 1282 mA
16 Crop out image of 5" digit, preprocess the same steps as 1" digit, make inference | 190 ms | 127.8 mA
17 Save time slots to MicroSD card 90 ms 129 mA
18 Initialize LoRaWAN LMIC driver 30 ms 127 mA
19 Send LoRaWAN packel to gateway in ABP 138 s 97.8 mA
20 Sleep 1 month 1.1 uA
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Fig. 9: Power flowchart per task

C. Monitor Website

The Things Network (TTN) provides APIs, which allows a
local website to send an HTTP request to this server to get
water meter values. Fig. 10 shows a monitor website created
with Bootstrap, AJAX.

= Prediction Result

Last packet sent to gateway: 22/05/2021 - 3:02:55 PM

Fig. 10: Monitor website

D. Final Device

Fig. 11 below shows the device is protected inside an IP65
water-proof plastic case. The case is well-designed for minimal
inference to the antenna.
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Fig. 11: Final Device

IV. CONCLUSION

This paper presents a design with great application potential
and can be deployed in widespread use because of its high
accuracy, low power, small footprint, using open-source Al
libraries and low cost commercial off-the-shelf component
(ESP32-Cam). However, the device is trained only for clas-
sifying Vietnam’s water meter digit type, and the meter’s face
has to be relatively clean. The deep learning model can not be
completely accurate as using sensors, reed switch, or digital
water meter.
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