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Abstract— With the development of information technology, 
VPN technology has been widely applied in many fields because it 
can be set up at a lower cost when compared to other security 
technologies. For this reason, VPN technology has been integrated 
on most platforms, such as computers, mobile devices, or routers. 
In VNP technologies, SSL-VPN, IPsec, Wireguard are considered 
as the three most popular ones today. This paper focuses on 
evaluating the performances of these VPN technologies integrated 
into the operating system for routers. After examining the 
throughput of these VPN technologies, as a simple and efficient 
technology, Wireguard is suitable for operating systems in routers. 
To do experiment, our routers named as BK-Router were designed 
and built by ourselves in this work.    

I. INTRODUCTION  
VPN (Virtual Private Network) is a technology that can help 

us create a secure network connection while using the public 
network. VPN can help users stay invisible on the internet by 
encrypting all user information when transmitting data. 
Moreover, VPN does not require users to build a new system. 
With the existing network infrastructure, users can create their 
VPN network easily [1] [2]. With these outstanding advantages, 
VPN has become more familiar with most network models that 
require high security as well as comprehensive connectivity. 
Thus, to meet the high demand of users, many organizations are 
implementing VPN technologies with many different protocols 
as well as many different encryptions and authentication 
algorithms. In particular, among those technologies, there are 
three popular VPN technologies today: SSL, IPsec and 
Wireguard, which provide users with high security, ease of use, 
a variety of encryption and authentication algorithms, etc [3].  

Besides, Router is also an indispensable device in any 
network model. With any modern router, it not only provides 
routing features for the network but also provides users with 
many different convenient services, especially the ability to 
provide VPN. However, the more features are integrated into 
one device, the more expensive the router will be. Therefore, the 
lightweight operating system for routers was born to solve the 
problem of the device cost as mentioned above [4]. It provides 
users with many convenient services, including VPN 
technologies, while its minimal hardware requirements are 
affordable to the majority of users.  

Generally, VPN technology and a lightweight router 
operating system have helped users save a lot of initial and 
operating costs. But as mentioned before, among three 

outstanding VPN technologies including SSL, IPsec, and 
WireGuard that are integrated into operating systems for routers, 
which is the best VPN technology for operating systems for 
routers, especially in the data transmission phase? 

Consequently, to address this question, this paper evaluates 
three VPN technologies: SSL-VPN, IPsec, and WireGuard and 
compares them from several aspects such as VPN tunneling 
performance and throughput. These results in our paper could 
help designers choose which VPN technology is suitable for 
their applications. 

The rest of the paper is structured as follows: Section II is a 
brief characterization of SSL-VPN, IPsec, and WireGuard 
protocols. Section III describes the test environment and the 
developed application to run the tests. The results and discussion 
are given in section IV, and the final section is the conclusion of 
this work. 

II. BRIEF DESCRIPTION OF SSL-VPN, IPSEC, AND 
WIREGUARD 

A. SSL-VPN 
OpenVPN is an SSL-VPN application that is deployed on 

Layer 2 and Layer 3 of the OSI model. Several SSL 
implementations have been created over the years, but 
OpenVPN is still the most mentioned name when discussing 
SSL-VPN by supporting many outstanding features such as 
security and easy connection. 

   
Figure 1. Inbound flow of OpenVPN packet 



Moreover, OpenVPN provides users with a wide choice of 
encryption algorithms (AES-GCM, AES-CBC, CHACHA20, 
...) as well as authentication algorithms (MD5, SHA, ...) with the 
help of OpenSSL. 

In the process of receiving an OpenVPN packet, first, like 
any regular packet, they must first go through a physical 
interface. Then the packet will be processed by OpenVPN and 
finally decrypt a packet before transferring the packet to the 
TUN interface. Inbound flow of OpenVPN packet is shown as 
Figure 1 [5] 

OpenVPN uses OpenSSL to perform packet encryption and 
authentication. OpenSSL is an all-around cryptography library 
that offers open-source applications of the TLS protocol, but it 
operates in user-space. Therefore, most of the time OpenVPN's 
packet processing is in user-space. It makes processing speed 
slows down since tasks have to jump between kernel-space and 
user-space constantly. 

The next section will introduce IPsec protocol, which uses 
Crypto API to encrypt packets. 

B. IPSec 
Unlike SSL-VPN, which is implemented mainly in user-

space, IPsec is considered as part of the Linux kernel, so it is 
implemented entirely in kernel space. Over the years, many 
applications have implemented IPsec, but the most popular 
seems to be StrongSwan. So in this paper, we take StrongSwan 
to represent IPSec protocol. In Figure 2, we want to show how 
Strongswan implements IPSec to encrypt and authenticate a 
packet. 

 
Figure 2. Inbound flow of OpenVPN packet 

In Linux, the standard solution for encrypted tunnels is 
IPsec, using the Linux transform layer ("xfrm”) [4]. The user 
fills in the kernel structure to define the cipher suite and key, or 
other transformations such as compression, to use for which 
packet selector passes through the subsystem. Strongswan uses 
the user-space Charon daemon to be responsible for updating 
data structures (Security Association Database and Security 
Policy Database) based on the results of the key exchange 
performed by IKEv2. Then when the tunnel has been 
established. Packets are encrypted and encapsulated through the 
XFRM Framework without the need for StrongSwan anymore. 

However, one thing to note is that IPSec does not do the 
encryption and decryption; it calls the functions in the Crypto 
API to perform encryption and authentication, as shown in 
Figure 2 [6]. 

So we can understand in a more straightforward way that 
StrongSwan is just an application to exchange keys to establish 
the initial VPN tunnel through IKE protocol and manage users' 
VPN connection information. And after the tunnel has been 
established, IPSec will be responsible for decoding/encrypting 
and encapsulating packets. 

C. WireGuard 
With IPsec, Users fill in a kernel structure by using a daemon 

in user-space to update these data structures based on the results 
of a key exchange, generally done with IKEv2. IPSec itself is a 
complicated protocol. The complexity, as well as the amount of 
code, of this solution, is considerable. IPSec separates the key 
exchange layer from the encryption part, which can be a wise 
separation from a semantic point of view. Furthermore, the same 
while separating the transformation layer from the interface 
layer is correct from a network viewpoint. However, this layered 
approach increases the complexity of the protocol. While 
WireGuard does away with these layering separations. Instead 
of the complexity of IPsec. WireGuard simply gives a virtual 
interface. After configuring the interface with a private key, the 
tunnel simply works. On the other hand, OpenVPN is a 
TUN/TAP user-space based on solution using TLS. By virtue of 
it being in user-space as we already mentioned, it has very poor 
performance since packets must be copied multiple times 
between kernel space and user-space, and a long-lived daemon 
is required.  

In short, WireGuard focuses on simplicity and an auditable 
codebase while remaining extremely fast and suitable for a 
modicum of environments. By combining the key exchange and 
layer three transport encryption into one mechanism and using a 
virtual interface rather than a transform layer [7]. However, 
WireGuard does not do well compared to the two competitors 
because it supports very few encryptions and authentication 
algorithms. WireGuard only uses ChaCha20 [8]  and Poly1305 
[9] for authenticated encryption. 

III. TESTBED SETUP 

A. Testbed setup 
Usually, there are two common VPN models: Site-to-Site 

model or Client-to-Site model. Companies often use Site-to-Site 
VPNs to connect their corporate networks and remote branch 
offices. This approach works when a company has in-house data 
centers, susceptible applications, or requires minimal 
bandwidth. However, most companies have moved their 
applications and data to the cloud, and their employees mostly 
work on mobile devices. It no longer makes sense for employees 
to go through a data center to get to the cloud. Instead, they can 
go to the cloud directly. 

Consequently, companies need to establish a network 
topology with access to cloud or data center applications by 
applying Client-to-Site model. VPN Client-to-Site is a type of 
VPN that allows a user to connect to a remote private network 
through a VPN server. Typically, to be able to use VPN client to 



site, the user's computer or any mobile device will have to install 
a VPN client software to be able to connect to the VPN server, 
which can be a server or a router that supports VPN. So, in this 
experimental model, we use a computer acting as a client 
connected to a VPN server which is a router (the specifications 
of all the devices will be listed in the next section) 

 
Figure 3. Experimental testbed 

B. Device specifications 
In order to make a VPN performance comparison, we 

designed and built a real-world network based on a Client-to-
Site model shown in Figure 3. Usually, in the real-world 
network, there are multiple VPN clients connected to a VPN 
server. However, this is not necessary in our case because the 
VPN tunnel throughput is equal to the total throughput of the 
connections. Therefore, topology with one client to a server or 
many clients to a server, the total throughput is the same. In our 
experimental model, we use two devices with specifications 
described as follows:  

 One computer with the following hardware 
specifications:  Intel Core i5 with four cores running at 
3.0 GHz (3.5GHz Turbo Frequency). 16 GB of 
2400MHz DDR4 RAM and an RJ45 port  10/100/1000 
Gigabit. Moreover, the computer is running Ubuntu 
20.04.  

 One our router uses Marvell's SOM Armada 388 
running at 1.3GHz, 1GB RAM, and 5 RJ45 ports  
10/100/1000 Gigabit. This device is self-developed that 
it can be easily controlled and operated and a deeper 
understanding of the working mechanism of VPN 
technologies. (Figure 4) 

 
Figure 4. Our router, as a VPN server, is built to be used in this paper.  

In addition, the performance comparison was made with the 
help of a program called iPerf3, which was selected due to its 
consistent performance, ease of use, and ability to produce the 
metrics required. Both client and server have iPerf3 installed; 
the client is a sender, the server is a receiver, and traffic 
generated by iPerf3 goes from client to server. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
This section presents measured VPN throughput across 

different encryption algorithms when applied to packet 
encryption as in section A and VPN throughput across three 
types of VPN technologies as in section B. 

A. Comparison of encryption algorithm 
For every VPN connection, security is a prerequisite that any 

VPN technology must-have. There are many ways to evaluate a 
VPN connection as secure such as security during key exchange 
or security during packet transmission. But in general, packet 
encryption is required for both of these processes. Thus, the 
packet is not eavesdropped by the attacker. As a result, many 
encryption algorithms have been created to meet different 
criteria for VPN technology. However, evaluating all 
cryptographic algorithms is a big challenge. Therefore, this 
paper only selects some popular encryption algorithms such as 
aes-cbc, aes-gcm, and Chacha20 to evaluate the performance on 
each VPN technology. 

 
Figure 5. Average throughput of the VPN algorithms based on IPsec VPN 

The average throughput after the VPN tunnel was 
established based on IPsec technology is shown in Figure 5. 
When analyzing CPU consumption, we verified that the 
Chacha20 algorithm achieves the highest throughput than the 
AES algorithm while using the same CPU consumption. The 
reason is ChaCha20 is based on ARX (Addition-Rotation-XOR) 
operations [9] [10], which are CPU-friendly instructions. In 
comparison, AES uses S-box and Mixcolumns computations, 
which are generally implemented as a look-up table. 

In addition, Figure 5 also shows the effect of key size on the 
AES encryption algorithm. The larger the key length value, the 
lower the VPN throughput. In other words, the larger the key 
length, the higher the complexity of the encryption algorithm, so 
the CPU needs more time and resources to encrypt a packet [11]. 
However, in the security field, the higher the complexity of the 
algorithm, the more difficult it to crack the algorithm. Therefore, 
a tradeoff in terms of throughput to increase security is worthy. 
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Figure 6. Average throughput of the VPN algorithms based on SSL-VPN 

The throughput of the VPN algorithms based on SSL-VPN 
is shown in Figure 6. It can be seen that the trend of increasing 
throughput of cryptography algorithms is the same when 
compared with IPsec technology. However, the difference in 
average throughput between the algorithms is not significant. 
The reason is that the duration of copying packets between 
kernel-space and user-space is significant when compared to the 
duration that SSL technology spends on encryption. So the 
influence of the speed of the encryption algorithms no longer has 
many effects on throughput. Besides, this leads to the time it 
takes to encrypt a packet increase, which results in lower 
throughput based on SSL technology compared to IPsec 
technology.   

B. Comparison of VPN technologies 
Section A showed that with both SSL and IPSec 

technologies, the throughput result of ChaCha20 algorithm is the 
highest. So in this section, we choose ChaCha20 algorithm as a 
representative to compare all three VPN technologies: SSL, 
IPsec, and WireGuard. Partly because WireGuard only supports 
ChaCha20 algorithm.  

 
Figure 7. Average throughput of three VPN technologies 

Figure 7 shows that the VPN throughput of the WireGuard 
technology is as large as the approximation of the maximum 
throughput that the hardware allows. In contrast, OpenSSL is 
performing quite poorly when its throughput is only 10% of 
WireGuard. OpenSSL throughput becomes worse than the other 
two technologies because it operates on user-space, which 
means there is added latency and overhead of the scheduler and 
copying packets between user space and kernel space several 
times.  

While IPsec also operates in kernel space, but it loses 
significantly in performance when compared to WireGuard. The 
reason is due to the mechanism of IPsec technology. IPsec is a 
complex technology to access and understand. Layering can be 
semantically as well as networking, but this makes IPsec 
complicated. WireGuard, in contrast, starts from the basis of 
flawed layering violations that made it faster than other VPN 
technologies.  

In brief, WireGuard, a technology with less than 4000 lines 
of code [7], demonstrates that it is effective. Its simplicity and 
non-layering mechanism allow it to achieve throughput higher 
than the other two VPN technologies efficiently. In addition, 
completely embedding the program in the kernel makes it faster. 
The time wasted copying a packet between the kernel-space, and 
the user-space is eliminated (Figure 8). 

 
Figure 8. The flow of a packet on three VPN technologies 

Also, when we measure the CPU performance of the VPN 
throughput measurement, the CPU consumption used by 
WireGuard technology is the maximum performance on both 
cores of the Router's SOM. While, with both IPsec and 
OpenVPN technologies, it seems that they can only run on one 
core of the SOM. This shows that WireGuard has effectively 
used the device's resources to optimize its performance using a 
multi-core mechanism for VPN implementation. 
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V. CONCLUSION 
This paper evaluates three VPN technologies: SSL-VPN, 

IPsec, and WireGuard and compares them in terms of VPN 
tunneling performance and throughput. From these results, 
WireGuard has probably outperformed than other two VPN 
technologies. However, it is not true to say that IPsec and SSL 
work inefficiently. From other perspectives such as algorithm 
support, they actually do much better than WireGuard. 
Furthermore, they are also the basis for creating WireGuard 
technology development. To sum up, after methodical 
evaluation of the three VPN technologies, WireGuard 
demonstrated that the simplicity and the breaking of rules in the 
network layer significantly affect the VPN's performance. The 
results in our paper could help designers choose which VPN 
technology is suitable for their applications. 
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