
A Comparative Research on VPN Technologies on
Operating System for Routers

Phu Nguyen Phan Hai, Hoa Nguyen Hong, Bao Bui Quoc, Trang Hoang
Department of Electronics, Faculty of Electrical and Electronics Engineering

Ho Chi Minh City University of Technology (HCMUT)
268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam

{haiphu, hoa.nguyen.raven7, buiquocbao, hoangtrang}@hcmut.edu.vn

Abstract— With the development of information technology,
VPN technology has been widely applied in many fields because it
can be set up at a lower cost when compared to other security
technologies. For this reason, VPN technology has been integrated
on most platforms, such as computers, mobile devices, or routers.
In VNP technologies, SSL-VPN, IPsec, Wireguard are considered
as the three most popular ones today. This paper focuses on
evaluating the performances of these VPN technologies integrated
into the operating system for routers. After examining the
throughput of these VPN technologies, as a simple and efficient
technology, Wireguard is suitable for operating systems in routers.
To do experiment, our routers named as BK-Router were designed
and built by ourselves in this work.

I. INTRODUCTION
VPN (Virtual Private Network) is a technology that can help

us create a secure network connection while using the public
network. VPN can help users stay invisible on the internet by
encrypting all user information when transmitting data.
Moreover, VPN does not require users to build a new system.
With the existing network infrastructure, users can create their
VPN network easily [1] [2]. With these outstanding advantages,
VPN has become more familiar with most network models that
require high security as well as comprehensive connectivity.
Thus, to meet the high demand of users, many organizations are
implementing VPN technologies with many different protocols
as well as many different encryptions and authentication
algorithms. In particular, among those technologies, there are
three popular VPN technologies today: SSL, IPsec and
Wireguard, which provide users with high security, ease of use,
a variety of encryption and authentication algorithms, etc [3].

Besides, Router is also an indispensable device in any
network model. With any modern router, it not only provides
routing features for the network but also provides users with
many different convenient services, especially the ability to
provide VPN. However, the more features are integrated into
one device, the more expensive the router will be. Therefore, the
lightweight operating system for routers was born to solve the
problem of the device cost as mentioned above [4]. It provides
users with many convenient services, including VPN
technologies, while its minimal hardware requirements are
affordable to the majority of users.

Generally, VPN technology and a lightweight router
operating system have helped users save a lot of initial and
operating costs. But as mentioned before, among three

outstanding VPN technologies including SSL, IPsec, and
WireGuard that are integrated into operating systems for routers,
which is the best VPN technology for operating systems for
routers, especially in the data transmission phase?

Consequently, to address this question, this paper evaluates
three VPN technologies: SSL-VPN, IPsec, and WireGuard and
compares them from several aspects such as VPN tunneling
performance and throughput. These results in our paper could
help designers choose which VPN technology is suitable for
their applications.

The rest of the paper is structured as follows: Section II is a
brief characterization of SSL-VPN, IPsec, and WireGuard
protocols. Section III describes the test environment and the
developed application to run the tests. The results and discussion
are given in section IV, and the final section is the conclusion of
this work.

II. BRIEF DESCRIPTION OF SSL-VPN, IPSEC, AND
WIREGUARD

A. SSL-VPN
OpenVPN is an SSL-VPN application that is deployed on

Layer 2 and Layer 3 of the OSI model. Several SSL
implementations have been created over the years, but
OpenVPN is still the most mentioned name when discussing
SSL-VPN by supporting many outstanding features such as
security and easy connection.

Figure 1. Inbound flow of OpenVPN packet

Moreover, OpenVPN provides users with a wide choice of
encryption algorithms (AES-GCM, AES-CBC, CHACHA20,
...) as well as authentication algorithms (MD5, SHA, ...) with the
help of OpenSSL.

In the process of receiving an OpenVPN packet, first, like
any regular packet, they must first go through a physical
interface. Then the packet will be processed by OpenVPN and
finally decrypt a packet before transferring the packet to the
TUN interface. Inbound flow of OpenVPN packet is shown as
Figure 1 [5]

OpenVPN uses OpenSSL to perform packet encryption and
authentication. OpenSSL is an all-around cryptography library
that offers open-source applications of the TLS protocol, but it
operates in user-space. Therefore, most of the time OpenVPN's
packet processing is in user-space. It makes processing speed
slows down since tasks have to jump between kernel-space and
user-space constantly.

The next section will introduce IPsec protocol, which uses
Crypto API to encrypt packets.

B. IPSec
Unlike SSL-VPN, which is implemented mainly in user-

space, IPsec is considered as part of the Linux kernel, so it is
implemented entirely in kernel space. Over the years, many
applications have implemented IPsec, but the most popular
seems to be StrongSwan. So in this paper, we take StrongSwan
to represent IPSec protocol. In Figure 2, we want to show how
Strongswan implements IPSec to encrypt and authenticate a
packet.

Figure 2. Inbound flow of OpenVPN packet

In Linux, the standard solution for encrypted tunnels is
IPsec, using the Linux transform layer ("xfrm”) [4]. The user
fills in the kernel structure to define the cipher suite and key, or
other transformations such as compression, to use for which
packet selector passes through the subsystem. Strongswan uses
the user-space Charon daemon to be responsible for updating
data structures (Security Association Database and Security
Policy Database) based on the results of the key exchange
performed by IKEv2. Then when the tunnel has been
established. Packets are encrypted and encapsulated through the
XFRM Framework without the need for StrongSwan anymore.

However, one thing to note is that IPSec does not do the
encryption and decryption; it calls the functions in the Crypto
API to perform encryption and authentication, as shown in
Figure 2 [6].

So we can understand in a more straightforward way that
StrongSwan is just an application to exchange keys to establish
the initial VPN tunnel through IKE protocol and manage users'
VPN connection information. And after the tunnel has been
established, IPSec will be responsible for decoding/encrypting
and encapsulating packets.

C. WireGuard
With IPsec, Users fill in a kernel structure by using a daemon

in user-space to update these data structures based on the results
of a key exchange, generally done with IKEv2. IPSec itself is a
complicated protocol. The complexity, as well as the amount of
code, of this solution, is considerable. IPSec separates the key
exchange layer from the encryption part, which can be a wise
separation from a semantic point of view. Furthermore, the same
while separating the transformation layer from the interface
layer is correct from a network viewpoint. However, this layered
approach increases the complexity of the protocol. While
WireGuard does away with these layering separations. Instead
of the complexity of IPsec. WireGuard simply gives a virtual
interface. After configuring the interface with a private key, the
tunnel simply works. On the other hand, OpenVPN is a
TUN/TAP user-space based on solution using TLS. By virtue of
it being in user-space as we already mentioned, it has very poor
performance since packets must be copied multiple times
between kernel space and user-space, and a long-lived daemon
is required.

In short, WireGuard focuses on simplicity and an auditable
codebase while remaining extremely fast and suitable for a
modicum of environments. By combining the key exchange and
layer three transport encryption into one mechanism and using a
virtual interface rather than a transform layer [7]. However,
WireGuard does not do well compared to the two competitors
because it supports very few encryptions and authentication
algorithms. WireGuard only uses ChaCha20 [8] and Poly1305
[9] for authenticated encryption.

III. TESTBED SETUP

A. Testbed setup
Usually, there are two common VPN models: Site-to-Site

model or Client-to-Site model. Companies often use Site-to-Site
VPNs to connect their corporate networks and remote branch
offices. This approach works when a company has in-house data
centers, susceptible applications, or requires minimal
bandwidth. However, most companies have moved their
applications and data to the cloud, and their employees mostly
work on mobile devices. It no longer makes sense for employees
to go through a data center to get to the cloud. Instead, they can
go to the cloud directly.

Consequently, companies need to establish a network
topology with access to cloud or data center applications by
applying Client-to-Site model. VPN Client-to-Site is a type of
VPN that allows a user to connect to a remote private network
through a VPN server. Typically, to be able to use VPN client to

site, the user's computer or any mobile device will have to install
a VPN client software to be able to connect to the VPN server,
which can be a server or a router that supports VPN. So, in this
experimental model, we use a computer acting as a client
connected to a VPN server which is a router (the specifications
of all the devices will be listed in the next section)

Figure 3. Experimental testbed

B. Device specifications
In order to make a VPN performance comparison, we

designed and built a real-world network based on a Client-to-
Site model shown in Figure 3. Usually, in the real-world
network, there are multiple VPN clients connected to a VPN
server. However, this is not necessary in our case because the
VPN tunnel throughput is equal to the total throughput of the
connections. Therefore, topology with one client to a server or
many clients to a server, the total throughput is the same. In our
experimental model, we use two devices with specifications
described as follows:

 One computer with the following hardware
specifications: Intel Core i5 with four cores running at
3.0 GHz (3.5GHz Turbo Frequency). 16 GB of
2400MHz DDR4 RAM and an RJ45 port 10/100/1000
Gigabit. Moreover, the computer is running Ubuntu
20.04.

 One our router uses Marvell's SOM Armada 388
running at 1.3GHz, 1GB RAM, and 5 RJ45 ports
10/100/1000 Gigabit. This device is self-developed that
it can be easily controlled and operated and a deeper
understanding of the working mechanism of VPN
technologies. (Figure 4)

Figure 4. Our router, as a VPN server, is built to be used in this paper.

In addition, the performance comparison was made with the
help of a program called iPerf3, which was selected due to its
consistent performance, ease of use, and ability to produce the
metrics required. Both client and server have iPerf3 installed;
the client is a sender, the server is a receiver, and traffic
generated by iPerf3 goes from client to server.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
This section presents measured VPN throughput across

different encryption algorithms when applied to packet
encryption as in section A and VPN throughput across three
types of VPN technologies as in section B.

A. Comparison of encryption algorithm
For every VPN connection, security is a prerequisite that any

VPN technology must-have. There are many ways to evaluate a
VPN connection as secure such as security during key exchange
or security during packet transmission. But in general, packet
encryption is required for both of these processes. Thus, the
packet is not eavesdropped by the attacker. As a result, many
encryption algorithms have been created to meet different
criteria for VPN technology. However, evaluating all
cryptographic algorithms is a big challenge. Therefore, this
paper only selects some popular encryption algorithms such as
aes-cbc, aes-gcm, and Chacha20 to evaluate the performance on
each VPN technology.

Figure 5. Average throughput of the VPN algorithms based on IPsec VPN

The average throughput after the VPN tunnel was
established based on IPsec technology is shown in Figure 5.
When analyzing CPU consumption, we verified that the
Chacha20 algorithm achieves the highest throughput than the
AES algorithm while using the same CPU consumption. The
reason is ChaCha20 is based on ARX (Addition-Rotation-XOR)
operations [9] [10], which are CPU-friendly instructions. In
comparison, AES uses S-box and Mixcolumns computations,
which are generally implemented as a look-up table.

In addition, Figure 5 also shows the effect of key size on the
AES encryption algorithm. The larger the key length value, the
lower the VPN throughput. In other words, the larger the key
length, the higher the complexity of the encryption algorithm, so
the CPU needs more time and resources to encrypt a packet [11].
However, in the security field, the higher the complexity of the
algorithm, the more difficult it to crack the algorithm. Therefore,
a tradeoff in terms of throughput to increase security is worthy.

166 159 149
223 204 185

314

0
20
40
60
80
100

0
50

100
150
200
250
300
350

C
PU

 p
er

fo
rm

an
ce

 (%
)

Th
ro

ug
hp

ut
 (M

bp
s)

Throughput CPU1 performance CPU2 performance

Figure 6. Average throughput of the VPN algorithms based on SSL-VPN

The throughput of the VPN algorithms based on SSL-VPN
is shown in Figure 6. It can be seen that the trend of increasing
throughput of cryptography algorithms is the same when
compared with IPsec technology. However, the difference in
average throughput between the algorithms is not significant.
The reason is that the duration of copying packets between
kernel-space and user-space is significant when compared to the
duration that SSL technology spends on encryption. So the
influence of the speed of the encryption algorithms no longer has
many effects on throughput. Besides, this leads to the time it
takes to encrypt a packet increase, which results in lower
throughput based on SSL technology compared to IPsec
technology.

B. Comparison of VPN technologies
Section A showed that with both SSL and IPSec

technologies, the throughput result of ChaCha20 algorithm is the
highest. So in this section, we choose ChaCha20 algorithm as a
representative to compare all three VPN technologies: SSL,
IPsec, and WireGuard. Partly because WireGuard only supports
ChaCha20 algorithm.

Figure 7. Average throughput of three VPN technologies

Figure 7 shows that the VPN throughput of the WireGuard
technology is as large as the approximation of the maximum
throughput that the hardware allows. In contrast, OpenSSL is
performing quite poorly when its throughput is only 10% of
WireGuard. OpenSSL throughput becomes worse than the other
two technologies because it operates on user-space, which
means there is added latency and overhead of the scheduler and
copying packets between user space and kernel space several
times.

While IPsec also operates in kernel space, but it loses
significantly in performance when compared to WireGuard. The
reason is due to the mechanism of IPsec technology. IPsec is a
complex technology to access and understand. Layering can be
semantically as well as networking, but this makes IPsec
complicated. WireGuard, in contrast, starts from the basis of
flawed layering violations that made it faster than other VPN
technologies.

In brief, WireGuard, a technology with less than 4000 lines
of code [7], demonstrates that it is effective. Its simplicity and
non-layering mechanism allow it to achieve throughput higher
than the other two VPN technologies efficiently. In addition,
completely embedding the program in the kernel makes it faster.
The time wasted copying a packet between the kernel-space, and
the user-space is eliminated (Figure 8).

Figure 8. The flow of a packet on three VPN technologies

Also, when we measure the CPU performance of the VPN
throughput measurement, the CPU consumption used by
WireGuard technology is the maximum performance on both
cores of the Router's SOM. While, with both IPsec and
OpenVPN technologies, it seems that they can only run on one
core of the SOM. This shows that WireGuard has effectively
used the device's resources to optimize its performance using a
multi-core mechanism for VPN implementation.

47.1 45.6 44.7

60.6 58.9 56.8

75.2

0

20

40

60

80

100

0
10
20
30
40
50
60
70
80

C
PU

 p
er

fo
rm

an
ce

 (%
)

Th
ro

ug
hp

ut
 (M

bp
s)

Throughput CPU1 performance

CPU2 performance

75.2

314

861

0

20

40

60

80

100

0

200

400

600

800

1000

OpenSSL
CHACHA20

IPsec
CHACHA20

WireGuard
CHACHA20

C
PU

 p
er

fo
rm

an
ce

 (%
)

Th
ro

ug
hp

ut
 (M

bp
s)

Throughput CPU1 performance

CPU2 performance

V. CONCLUSION
This paper evaluates three VPN technologies: SSL-VPN,

IPsec, and WireGuard and compares them in terms of VPN
tunneling performance and throughput. From these results,
WireGuard has probably outperformed than other two VPN
technologies. However, it is not true to say that IPsec and SSL
work inefficiently. From other perspectives such as algorithm
support, they actually do much better than WireGuard.
Furthermore, they are also the basis for creating WireGuard
technology development. To sum up, after methodical
evaluation of the three VPN technologies, WireGuard
demonstrated that the simplicity and the breaking of rules in the
network layer significantly affect the VPN's performance. The
results in our paper could help designers choose which VPN
technology is suitable for their applications.

ACKNOWLEDGEMENTS
We acknowledge the support of time and facilities from Ho

Chi Minh City University of Technology (HCMUT), VNU-
HCM for this study.

REFERENCES
[1] S. Sridevi and M. D. H, "Technical Overview of Virtual

Private Networks(VPNs)", International Journal of
Scientific Research, vol. II, no. 7, pp. 93-96, 2012.

[2] Q. Jing, A. Vasilakos, J. Wan, J. Lu and D. Qiu,
"Security of the Internet of Things: Perspectives and
challenges", Wireless Networks, vol. 20, p. 2481–2501,
2018.

[3] M. X. Zheng Wu, "Performance Evaluation of VPN with
Different Network Topologies", International
Conference on Electronics Technology, pp. 51-55, 10
May 2019.

[4] P. Weidenbach and J. v. Dorp, "Home Router Security
Report 2020", Fraunhofer, München, June 2020.

[5] Pippin, "How Packets Flow", OpenVPN, 17 December
2019. [Online]. Available:
https://community.openvpn.net/openvpn/wiki/HowPack
etsFlow.

[6] H. Dhall, D. Dhall, S. Batra and P. Rani,
"Implementation of IPSec Protocol", Advanced
Computing & Communication Technologies, Rohtak,
2012.

[7] J. A. Donenfeld, "WireGuard: Next Generation Kernel
Network Tunnel", Network and Distributed System
Security Symposium, California, 2017.

[8] D. J. Bernstein, "ChaCha, a variant of Salsa20", 28
January 2008. [Online]. Available:
https://cr.yp.to/chacha/chacha-20080128.pdf.

[9] D. J. Bernstein, "The Poly1305-AES Message-
Authentication Code", 29 March 2005. [Online].
Available: https://cr.yp.to/mac/poly1305-20050329.pdf.

[10] R. Andriani, S. E. Wijayanti and F. W. Wibowo,
"Comparision Of AES 128, 192 And 256 Bit",
Information Technology, Information Systems and
Electrical Engineering, pp. 120-124, 13 November
2018.

[11] D. A. F. Saraiva, V. R. Q. Leithardt, D. d. Paula, A. S.
Mendes, G. V. González and P. Crocker, "PRISEC:
Comparison of Symmetric Key Algorithms for IoT
Devices ," Sensors, vol. 19, no. 19, pp. 4312 - 4312,
2019.

