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Abstract—Noise-like artifacts, which are caused by incomplete
and randomly sampled data, spread over the whole ambiguity
domain, and thus seriously obscure the true time-frequency
signature of the data. In this paper, a new design for the signal-
dependent adaptive kernel is proposed, which is robust with
missing data. The method relies on the properties of chirps whose
auto-terms only reside in a fixed half of the ambiguity domain.
The important thing is that this half excludes the Doppler axis,
where the chirps’ noise-like artifacts concentrate. By cutting out
this region when performing the optimization problem, a better
signal-dependent kernel for chirps is obtained, which efficiently
suppresses not only the cross-terms but also the missing sample
artifacts. Moreover, since any windowed non-stationary signals
can be approximated as a sum of chirps, the proposed approach
can be applied to other types of non-stationary signals. It is
shown in the simulation that our method outperforms other
reduced interference time-frequency distributions of incomplete
observations.

Index Terms—reduced interference time-frequency distribu-
tion, missing samples, signal-dependent kernel, chirps.

I. INTRODUCTION

Time-frequency distributions (TFDs) are employed to an-
alyze signals with time-varying spectral content in a wide
variety of applications [1]–[7]. While numerous different time-
frequency representations (TFRs) have been developed, no
single time-frequency (TF) estimation is ideal in all cases. The
most widely used method is the short-time Fourier transform
(STFT), in which the Fourier transform is implemented for
each sliding window to ascertain the signal ’s frequency
content [8]–[10]. The major limitation is the trade-off between
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time and frequency resolution. While the Wigner- Ville ap-
proach does provide better resolution, it suffers significantly
from the cross-terms resulting from the bilinear product. This
could lead to misinterpretation of local power location. To
solve this problem, many approaches of signal-independent
and signal-dependent reduced interference distributions (RIDs)
have been proposed. The former involves applying a fixed two-
dimensional (2D) low-pass filter in the ambiguity domain to
capture the signal’s auto-terms which normally locate around
the center. However, these fixed masks do not always work
effectively because there are signals with their cross-terms also
residing near the origin and their auto-terms locating far away
the center. As the distribution of cross- and auto-components
in the ambiguity domain actually depends upon the analyzed
data, signal-dependent kernels have been proposed to guaran-
tee a good performance for a large class of signals. The radially
Gaussian kernel (RGK) and its online performance version,
adaptive optimal kernel (AOK), are outstanding examples in
this category [11], [12]. In general, the algorithm of these
signal-dependent kernels constructs a mask that automatically
matches with the signal’s auto-terms, and so it largely removes
the cross-terms and performs well with many types of signals.
However, in the case of missing samples, artifacts appear all
over the ambiguity domain, which can be wrongly interpreted
as signal auto-terms and misguide the conventional signal-
dependent kernel methods to capture the incorrect region in
the ambiguity domain, thus resulting in highly cluttered TFRs.

In this paper, we introduce a new design for the signal-
dependent RID which can both efficiently remove cross-terms
and combat with missing sample effects. The method relies on
three features. Firstly, according to [15], a chirp’s auto-terms
always reside in only a fixed half of the ambiguity domain.
Thus, for chirp signals, the other half of the ambiguity domain



could be eliminated without any concern for loss of the signal’s
auto-terms. Secondly, the Doppler axis, where the chirp’s
artifacts gather, does not lie in the auto-terms residing half of
the ambiguity domain. By removing the other half, the artifacts
are largely suppressed. Finally, according to [13] and [14], any
non-stationary signal segment can be approximated as a sum
of chirps. Therefore, for any non-stationary signal segments,
we can freely cut off the other half of the ambiguity domain.
So this paper is organized as follows. Section II presents
the artifact distribution of the compressed chirp signals, and
the unsuitability of traditional signal-independent and signal-
dependent RID in the case of incomplete data. Section III
introduces the signal-dependent chirp-based adaptive kernels.
Section IV shows simulation results. Finally, conclusions are
given in section V.

II. COMPRESSED CHIRP SIGNALS
Denote s(n) as the full chirp signal, which is expressed as

follows:
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where α, β, Fs are the chirp rate, initial frequency, and
sampling frequency, respectively. n is the discrete variable,
n = 0, 1, ..., N−1, with N being the length of the signal. The
corresponding instantaneous auto-correlation function (IAF)
Rss and ambiguity function (AF) Ass are as follows [8]:
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where b, ω′ are respectively the time lag and the Doppler
angular frequency. Let us define x(n) as the compressed data
of the original full data s(n), which is given as [16]:

x(n) = s(n)

(
1−

∑
nm

δ(n− nm)

)
, (4)

where nm ∈ {0, 1, 2..., N − 1} is a set of random time points
when the original data is missing (i.e. set to zero) and δ(n) is
the Kronecker delta function. The AF of the compressed data
is written as:

Axx(ω′, b) =
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′n/N . (5)

With x(n) in (4), the AF of the incomplete signal x(n)
obviously has four terms, which are the AF of the full signal
s(n) given by (3) and the three artifacts. The latter terms are
denoted as V1, V2, V3, and are expressed as follows,
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∑
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(a) (b)

Fig. 1: AF of (a) A compressed arbitrary chirp; (b) Four
compressed arbitrary chirps.
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where n′ = nm − b/2 and n′′ = nm + b/2. From (6), (7) and
(8), it can be seen the missing data artifacts of a compressed
chirp spread across the entire ambiguity domain. However,
we should note that at b = 0, the total artifact at ω′ is
V1(ω′, 0)+V2(ω′, 0)+V3(ω′, 0) = −

∑
nm

exp(−j ω
′nm
N ) and

this number will be many times larger if the signal is composed
of more than one chirp. This is illustrated in Fig.1. Fig.1(a)
shows that the entire ambiguity domain of a compressed chirp
is seriously cluttered by artifacts, but their magnitudes are still
less than that of the auto-terms. In Fig.1(b), when the signal
is composed of four chirps and missing samples are present,
the artifacts’ magnitude along the Doppler axis gets stronger,
and even overwhelms that of the auto-terms.

The above analysis discourages the use of traditional signal-
independent kernels, which capture all values along b = 0 due
to the marginal property. Besides, the chirps’ auto-terms are
not restricted to around the origin. By using the conventional
signal-independent kernels, not only part of the chirp’s auto-
terms are omitted but also a major component of missing
artifacts is passed through. The conventional dependent-signal
kernel (RGK or AOK) is also not suitable to be applied in
the case of incomplete signals, which is illustrated in Fig.
2. The artifacts along the Doppler axis (b = 0) are wrongly
interpreted as the chirp’s auto-terms and then the kernel will
operate in favor of this region, taking all these terms (Fig.
2 (b)). This leads to highly contaminated TF representations
(Fig. 2 (d)). So this paper proposes a new design approach to
signal-dependent RIDs to provide robustness to compressed
non-stationary signals.



(a) (b)
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Fig. 2: (a) AF; (b) RGK; (c) AF after being filtered by RGK;
(d) TFR with RGK for a signal composed of two crossing
chirps. Note that 50% of the data is missing in all cases.

III. CHIRP-BASED ADAPTIVE KERNEL

A. Fixed signal-dependent kernel for chirps

This approach applies the chirp’s properties in the ambiguity
domain [15] and the algorithm of RGK to obtain a new kernel
that is appropriate for chirps in the cases of full and incomplete
data. The principle of RGK is that it keeps the magnitude
of the kernel in the ambiguity domain large wherever that
of the signal’s AF is large, regardless of whether the peaks
correspond to auto-terms or undesired terms ( [11], [12]). This
can be implemented by solving an optimization problem in
the polar coordinates of the ambiguity domain, in terms of
the radius r and the aspect angle φ. It samples the angle φ
and the radius r into Q, and G discrete values, respectively.
The original discrete Gaussian kernel in polar coordinates is
then expressed as follows:

C(g, q) = e
− (g∆r)2

2σ(q∆φ)2

g = 0, ..., G− 1, q = 0, ..., Q− 1,
(9)

where g and q are respectively the radius and angle indices.
∆r, ∆φ, and σ are the radius, the angle step sizes, and the
spread parameter, respectively. Initially, the normal Gaussian
kernel is used with equal spread parameter σ for every angle.
Then, the spread parameter is updated by the gradient ascent
method in such a way that it is large at a certain angle if
the magnitude of the AF is large. The problem is that the
magnitudes of missing sample artifacts along the Doppler axis
are very strong, even larger then that of the auto-terms if
the signal is composed of more than one chirp. Therefore,
the RGK will be wrongly guided to take this region, which
leads to noisy TFRs. Fortunately, for any chirps, the auto-
terms always reside inside a half of the ambiguity domain,
|φ| ≤ π/4 and 3π/4 ≤ φ ≤ 5π/4, which excludes the Doppler

axis [15]. Therefore, the other half of the ambiguity domain
can be removed without causing any loss of auto-terms.
Furthermore, almost half of the cross-terms are removed. And
more importantly, a major part of missing data artifacts is
eradicated. Thus, the optimal kernel is modified so that the
optimization problem is only carried out in the auto-term
residing half of the ambiguity area. First, an edited version of
the Gaussian kernel is applied in the ambiguity plane, where
the spread parameter is zero outside the region |φ| ≤ π/4 and
3π/4 ≤ φ ≤ 5π/4. Then, the spread vector is updated by
performing the optimization which is expressed as follows,

max
C(n;g,q)
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Q−1∑
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r |Ass(n; g, q)C(n; g, q)|2
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where a is the kernel volume (1 ≤ a ≤ 5) [11], [12], and A is
the region of |φ| ≤ π/4 and 3π/4 ≤ φ ≤ 5π/4. The optimal
kernel is converted to the coordinates of Doppler frequency
and lag before being used to calculate the TF as follows,

TFD(n, k) =
∑
p

∑
b

A(p, b)C(p, b)e−j2πnp/Ne−j2πbk/N ,

(11)
where p is the discrete Doppler frequency, and k is the discrete
frequency.

B. Chirp-based signal-dependent adaptive kernel

The above kernel is basically applied when the input signals
are chirps and not for other types of non-stationary signals.
Nevertheless, according to [14], [15], the frequency law of
any non-stationary windowed signal can be approximated as
a sum of chirps. Thus we can use the aforementioned fixed
kernel for each windowed signal. The algorithm proceeds as
follows. At each time n, we compute the short-time ambiguity
function (STFT) centered at time n, which is given by:

AF (n; p, b) =
∑
u

s∗(u− b/2)w∗(u− n− b/2)

s(u+ b/2)w(u− n+ b/2)ej2πup/Nw ,
(12)

where w(u) is a symmetrical window function which is zero
when |u| > Nw/2. Then the signal-dependent kernel for the
windowed signal, C(n; p, b), is obtained by using (9). The
current-time slice of the TFR is computed as follows:

TFR(n, k) =∑
p

∑
b

A(n; p, b)C(n; p, b)e−j2πnp/Nwe−j2πbk/Nw . (13)
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Fig. 3: Example 1, a chirp and a sinusoid with 50% data
removed: (a) Windowed Choi-Williams distribution; (b) TFR
obtained using the AOK; (c) Windowed chirp-based TFR; (d)
Chirp-based adaptive optimal TFR.

IV. SIMULATION

This section evaluates the performance of the proposed
chirp-based signal-dependent adaptive RID, with various types
of non-stationary signals. The signals are sampled at the
Nyquist rate, and then randomly shortened (as in (4)) to create
the incomplete data to be processed. To get a visual compar-
ison, the other three methods, Choi-Williams, the AOK, and
the fixed chirp-based TFR [15], are simulated with the same
signals. The resulting images are normalized and transfered to
the energy versions to display. A parameter of concentration
level ζ is used to access the accuracy of the resulting TFR.
ζ is the ratio of the sum of pixel magnitude along the actual
instantaneous frequency of the signals with respect to the rest
of the TF values. So, the higher ζ, the more accurate the TF
approximation. It is shown that our proposed method provides
improved TF estimation. In all plots, the frequency axis is
normalized with respect to the sampling frequency Fs.

1) Example 1: The first example considers a signal com-
posed of a chirp and a sinusoid, which is given below:

s(n) = exp

{
j2π[(0.1Fs)

n

Fs
+ (0.3Fs)

n2

2F 2
s

]

}
+

exp

{
j2π[(0.1Fs)

n

Fs
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}
+ v(n),

(14)

with the sampling frequency Fs = 256 Hz. The signal’s length
is one second, or N = Fs, and n = 0, ..., N − 1. The signal
is corrupted by white Gaussian noise v(n) with the signal-
to-noise ratio (SNR) set to 30 dB. A rectangular window of
length Nw = 64 is used. We randomly remove 50% of the
signal samples to generate the compressed observations as in
(4).

(a) (b)

(c) (d)

Fig. 4: Example 2, a multi-component signal with 50% data
removed: (a) Windowed Choi-Williams distribution; (b) TFR
obtained using the AOK; (c) Windowed chirp-based TFR; (d)
Chirp-based adaptive optimal TFR.

The resulted TFRs are shown in Fig. 3. The traditional fixed
Choi-Williams kernel takes in all artifacts along the Doppler
axis. It also cannot filter the cross-terms locating near the
origin of the ambiguity domain. Thus, the TF signature is very
contaminated with the concentration level ζ = 0.73. The fixed
windowed chirp-based kernel gives a better performance as
can be seen in Fig. 3(c) because it suppresses more cross-terms
and artifacts. The concentration level is ζ = 1.74. Fig. 3(b) has
many vertical lines in the TFR obtained by the AOK. These
lines are impulses caused by components captured along the
Doppler axis. However, it performs better than the two signal-
independent kernels with ζ = 3.39. By removing the artifacts
along the Doppler axis, the proposed signal-dependent chirp-
based adaptive kernel achieves the most reliable result among
the four methods with ζ = 6.

2) Example 2: The second example is a multi-component
signal as follows:

s(n) = exp

{
j(0.15Fs) cos(2π

n

Fs
+ π) + j2π(0.25Fs)

n

Fs

}
+ exp

{
j(0.15Fs) cos(2π

n

Fs
) + j2π(0.25Fs)

n

Fs

}
+ v(n).

(15)

Similarly, we set SNR = 30dB, Fs = 256 Hz, N = 256,
n = 0, ..., N − 1. A rectangular window of length Nw = 64
is used. The signal is also randomly shortened by 50%. The
simulation results in Fig. 4 show that both fixed and adaptive
kernels based on the chirp give a better performance than the
traditional ones. It is evident that the windowed Choi-Williams
distribution is severely influenced by the cross-terms and the
artifacts, which can be seen in Fig. 4(a). The concentration



level is ζ = 0.52. The fixed chirp-based kernel gives better
results compared with the fixed Choi-William kernel with
ζ = 2.48. Similar to example 1, the AOK experiences some
vertical lines as the result of wrong areas captured in the
ambiguity domain. The concentration level is ζ = 3.5. The
TF estimations get improved when the signal-dependent chirp-
based adaptive kernel is used with ζ = 5.8.

V. CONCLUSION

This paper has introduced a new design for signal-dependent
RIDs. Based on the fact that the auto-terms of chirps only
reside inside a fixed half of the ambiguity domain, which does
not accommodate the Doppler axis, and any non-stationary
segments can be approximated by a sum of chirps, the
proposed approach is operated on windowed signals with the
kernel being zero outside that half of the ambiguity plane. By
removing a half of the ambiguity plane where the signals’
auto-term do not reside, the outcomes of the optimization
problem are much better in the case of incomplete data as
it does not wrongly capture the region of Doppler axis, where
the artifacts always appear. Also, the kernel shapes in favour
of the auto-terms and so that the cross-terms are efficiently
suppressed. It is illustrated by simulations that our method
is superior to other conventional signal-dependent and signal-
independent methods when missing samples are present.
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