
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Efficient Multipath Routing Scheme for

MPTCP-enable Software-Defined Networks

Khac Tuan Nguyen

Posts and Telecommunications

Institute of Technology

Hanoi, Vietnam

Linh T. Nguyen

Posts and Telecommunications

Institute of Technology

Hanoi, Vietnam

linhnt.B17VT215@stu.ptit.edu.vn

Huu Tien Vu

Posts and Telecommunications

Institute of Technology

Hanoi, Vietnam

tienvh@ptit.edu.vn

Hai-Chau Le

Posts and Telecommunications

Institute of Technology

Hanoi, Vietnam

chaulh@ptit.edu.vn

Abstract—In this paper, we study the multipath routing

problem in MPTCP-enable software-defined networks. We have

proposed an efficient multipath routing algorithm for creating

bandwidth-abundant and flexible future software-defined core

networks. Our proposed algorithm will figure out k-least-jointed

shortest paths by using conventional k-shortest path algorithm,

e.g., Yen's algorithm, incorporating with a greedy algorithm for

the path selection. Thanks to that, the algorithm can help to exploit

the use of MPTCP while reducing the bottleneck problem that

may occur with shared links in the networks. In order to verify the

efficiency of our proposal, we have implemented an MPTCP-

enable software-defined testbed based on mininet, Ryu controller,

and Kali Linux OS and perform numerical experiments to

compare the network performance of our approach to traditional

MPTCP as well as conventional TCP (without MPTCP). The

obtained results confirmed that, by reducing the number of

jointed links in the set of selected k-shortest paths, our solution

outperforms the traditional MPTCP as well as that of

conventional TCP networks.

Keywords—Multipath TCP, software defined networking,

multipath routing, k shortest path algorithm.

I. INTRODUCTION

Recently, the rapid growth of video/multimedia-centric
services and the fast development of emerging next-generation
network technologies including 5G, 6G have triggered and
introduced new revenue potentials for Telcos, ISPs as well as
Over-The-Top providers [1], [2]. They are expected to be able
to deliver high video quality to the end users smoothly and cost-
effectively to enhance the users’ experience [3]. However,
achieving good Quality of Experience (QoE) is still a
challenging task because of many factors. Hence, great efforts
from both academia and industry have been performed in order
to optimize the video content delivery chain and enhance end
users’ QoE. The most common approaches are either based on
network optimization or client driven adaptive video streaming
[3].

In the network point of view, traditional TCP protocol that
is employed widely at the present seems not to be able to meet
the near future requirement. To cope with that, Multipath TCP
(MPTCP) standardized by the IETF has recently emerged as a
promising transport protocol capable of forwarding data traffic
using multiple paths [4], [5], [6]. Key idea of MPTCP is to
separate user’s traffic into multiple paths to route in the network.
However, one of the hardest challenges is how to perform
routing for the multiple paths to bring optimal performance to

the data flows [4]. Fortunately, Software-Defined Networking
(SDN) has been emerged as one of the most promising network
technologies that are capable of providing more
programmability, automation and flexibility to the networks
[7],[8][9]. SDN separates the control from the data plane of
networking devices [7], [8]. In software-defined networks, the
control plane becomes an external entity, called controller, while
the data plane is composed of simplified networking devices,
which carry out only forwarding packets along with a limited
number of simple tasks. On the other hand, OpenFlow, which is
the most notable protocol from the SDN’s Southbound API, is
utilized to provide a common interface for the controller
interacting with its switches. The SDN controller has a global
view of the overall network and is responsible for the
management decisions. It is expected to offer a rich Northbound
API to applications for flexibly and cost-effectively deploying
new services as well as implementing network policies. Thank
to that, the controller can calculate and perform routing to give
a better route than the normal network system [10], [11], [12].

In this paper, we investigate MPTCP-enable software-
defined networks for constructing next-generation bandwidth-
abundant and low-latency networks. We propose an effective k-
least-jointed shortest path routing scheme for exploiting the use
of MPTCP while avoiding or reducing the bottleneck problem
with shared links to improve the network performance. Our
proposed multipath routing algorithm is able to find k-least-
jointed shortest paths by using traditional k-shortest path
algorithm incorporating with a greedy algorithm for the path
selection. Based on that, the developed solution can help to
exploit MPTCP while capable of limiting the bottleneck
problem in the networks. We also implement a testbed and
employ numerical experiments to evaluate and verify the
performance efficiency of our proposal. It is demonstrated that,
by reducing the number of jointed links in the set of selected k-
shortest paths, our developed solution provides better
performance than that of the traditional MPTCP approach as
well as that of conventional TCP networks.

II. PROPOSED K-LEAST-JOINTED SHORTEST PATH ROUTING

ALGORITHM FOR MPTCP-AWARE SDN NETWORKS

Figure 1 shows a typical MPTCP-enable software-defined

networks that we consider in this work. The software-defined

network is capable of supporting multipath TCP for next

generation ever-increasing bandwidth and QoS/QoE-ensured

services. In the considered SDN system, MPTCP protocol

works similarly to conventional ones. However, in our MPTCP-

enable SDN network, sub-flow paths of each MPTCP

connection are determined by SDN controller. The controller

will dynamically calculate multiple paths for MPTCP

connection based on current state of network information and

control strategies applied in the network.

In fact, path calculation module plays an important role in

network operations. Generally, in MPTCP-enable SDN

networks, k-shortest path algorithms are applied to figure out

multiple paths for assigning to sub-flows. Depending on the

number of sub-flows utilized, an appropriate number of path

candidates needs to be determined. Several conventional works

have proved that efficient routing algorithm can help to greatly

improve network performance [13]. The path selection is also

relied on various network conditions, i.e., the applied traffic

control strategy or the network information collected at the time

of path calculation. Although using MPTCP with multiple paths

for sub-flows greatly improves the network performance, the

shortest paths may be not always the best choice and the

selection of suitable multiple paths among found path

candidates can also contribute significantly to network

performance enhancement. However, to the best of our

knowledge, up to now, conventional works simply applied k-

shortest algorithm to find k paths and assign to sub-flows in

load-balancing manner. This approach may encounter a

bottleneck problem when two or more selected paths are

sharing a same link and a traffic congestion may be occurred.

As a result, it will affect the network operation and limit the

performance of MPTCP in the network.

Figure 1. Typical MPTCP-enable software-defined network

To cope with that, we develop an effective multipath routing

scheme that is able to reduce the number of joined links

between the selected paths for exploiting the use of MPTCP

more efficiently. Our idea is that, in order to find k shortest

paths, we first find a set of path candidates with k-greater

element number, say αk path candidates, where α is a pre-

determined factor (α≥1). We then select k paths among those

found path candidates by using greedy algorithm to ensure that

each selected path has a minimal correlation function of the

joined link number in the relationship with the others.

Consequently, our selected k paths can have a smaller number

of jointed links among them. Hence, we call the proposed

algorithm as k-least-jointed shortest path routing algorithm.

Details of the proposed algorithm is described as following.

Algorithm: k-least-jointed shortest path(t, s, d)

Input: ✓ Network topology G(V, E)

✓ Updated network information and configuration at the time t

✓ Connection request R(t, s, d); t is the arrival time, (s, d) is the

node pair

✓ α: algorithm factor

✓ k: number of shortest paths needed

Output: k paths

Begin

1: Calculate K := αk

2: Pu is a path from s to u

3: Ku is the number of found path from s to u

4: B is a heap data structure containing paths

5: P: set of shortest paths from s to t

6 Q: set of k-least-jointed shortest paths from s to t

7: Initialization:

P := Ø

Q := Ø

Ku:=0 , for all u in V

Insert path Ps = {s} into B with the cost of 0

8: While B is not empty and Kt < K do

9: Begin

10: Let Pu be the shortest cost path in B with cost C

11: B = B − {Pu}, Ku = Ku + 1

12: if u = t then P = P U {Pu}

13: if Ku ≤ K then

14: For each vertex v adjacent to u do

15: Begin

16: Let Pv be a new path with cost C + w(u, v) formed

 by concatenating edge (u, v) to path Pu

17: Insert Pv into B

18: Endfor

19: Endwhile

20: For i:=1 to k do

21: Begin

22: Find Pt a shortest path (in order of cost) that has the minimal

 correlation function of jointed link numbers with selected paths

23: P = P U {Pu}

24: Endfor

25: Return Q

End

III. PERFORMANCE EVALUATION AND DISCUSSION

A. Experimental Setup

In this section, we implement an SDN network that enables

MPTCP for high-speed, low latency and reliable services, i.e.,

video streaming or large capacity file transmission. We

evaluate the performance of the network employing our

proposed k-least-jointed shortest path routing scheme and

compare to that of traditional MPTCP with k-shortest path

scenario [13], [14] and the case of conventional TCP. For

realizing the testbed, we use mininet [15] for creating an SDN

environment with OpenvSwitches and external SDN controller

based on Ryu [16] and two virtual machines (VM) playing as

MPTCP client and server. Figure 2 shows our experimental

testbed that consists of nine OpenFlow-enabled switches

(called as OvS#i where #i is the switch index) controlled by a

Ryu-based controller to support a pair of MPTCP client-server

VMs running Kali Linux 2020 [3] with the kernel version of

4.19.126.mptcp (4-core CPUs and 8 GB RAM).

Figure 2. Experimental testbed

In the experimental testbed, the IP addresses of MPTCP

client (denoted as H1) and server (H2) are set at 10.0.0.11/24

and 10.0.0.10/24 respectively. The IP address of the SDN

controller is 127.0.0.1. The bandwidth of the link from OvS9 to

the MPTCP server, H2, is assumed to be 20 Mbps, that of the

link connecting OvS9 to OvS6 is 15 Mbps and the bandwidth of

other remaining links is 10 Mbps. For simplicity, the link delay

(link distance) will not be considered. We also assume that the

number of k-shortest paths used in our systems is 2. The tested

OpenFlow version is 1.3. We test with two service scenarios that

are video streaming and large video file transferring.

B. System Operation Verification

We have tested our system to verify its operations with

MPTCP service. Figure 3 shows the flow graph of a MPTCP

connection establishment with 2 routes. It is confirmed that the

MPTCP connection works successfully in our testbed. The

MPTCP establishment for two streams (sub-flows) includes four

steps: (1) is the handshaking for establishing the MPTCP

connection of the first sub-flow, (2) is the way that MPTCP adds

another sub-flow, (3) is the communication session of the

MPTCP protocol using two sub-flows, and finally, (4) is the

disconnection process.

Figure 3. Flowgraph of MPTCP connection establishment

Furthermore, details of major OpenFlow messages for the
MPTCP connection are listed in Figure 4; Figure 4.a shows the
message for the process of establishing the connection of
subflow1 by the MPTCP client (on the network interface with
the IP address of 10.0.0.11); Figure 4.b is the message requested
to add the second sub-flow by the MPTCP client (on the
network interface with the IP address of 10.0.0.10) and, Figure
4.c is the OpenFlow MOD message from the Controller that
specifies the port forward for OpenvSwitches when setting up
the first sub-flow.

a) SYN+MP_CAPABLE message

b) SYN+MP_JOIN message

c) OpenFlow_MOD message

Figure 4. Typical SDN messages for multipath TCP connection

C. Experimental Results and Discussion

In this part, we have evaluated the network performance of

three comparable SDN network scenarios that are: 1) MPTCP-

ware SDN network with our developed routing schemes (so

called Proposed), 2) an equipvalent MPTCP enable SDN

network with traditional k-shortest path algorithm (denoted as

Traditional) and 3) conventional network without MPTCP

(then being called TCP only) respectively. All three comparable

network scenarios are tested under the same network conditions

and the same applications including video streaming and large

capacity file transferring.

a) Downloaded bandwidth

b) Uploaded bandwidth

Figure 5. Bandwidth comparison

Firstly, we have tested video streaming service with/without

MPTCP on our MPTCP-ware software-defined network. Video

streaming service is assumed as ultra-high quality with adaptive

streaming rates. We have conducted the test 3 times and the

average results are then plotted. For each test, we have streamed

the video in 120 seconds. Figure 5 illustrates the downloaded

and uploaded bandwidths of the video streaming connections

for the three comparing cases. The results show that, by using

two sub-flows with two separate routes for carrying out the

communication session between the client and the server, both

MPTCP-enable network scenarios (Proposed and Traditional)

outperform that of conventional TCP network (without MPTCP

- TCP only) and offer higher bandwidth. It is also verified that

our proposed approach provides the best performance, much

higher that Traditional scenario and as almost twice as that

without MPTCP. The reason is that Traditional scenario has

encontered a bottleneck on the link between OvS6 and OvS9

due to none consideration of the jointed paths while our

proposed algorithm can be able to reduce the number of jointed

links in the set of selected k-shortest paths.

 Thank to that, the network utilizing our proposed routing
algorithm also has smoother bandwidth graphs because it can
avoid traffic congestion on the jointed link too. Figure 6 clearly
show the impact of link congestion on the network performance.
In the Traditional scenario, two sub-flows conflicted together
and caused the bumpy graph lines. It means that, our proposed
solution can not only exploit MPTCP but also help to avoid or
reduce the bottleneck problem in jointed links of k-shortest
paths. In Figure 6, the bandwidths of both sub-flows are almost
equal thank to the use of load balancing scheme.

Figure 6. Downloaded bandwidths of each MPTCP sub-flow

Figure 7. Latency comparison

 Moreover, we also evaluated the latency, one of the most
important parameters affecting the quality of experience of
video streaming services, of the video streaming service
connections in the tested software-defined network scenarios.
Figure 7 demonstrates the latency comparison of three network
scenarios. Actually, here, the results are measured in the ideal
environment with the assumption that the transmission delay is
ignored, the attained latency of all scenarios is relatively low.
The obtained results demonstrated that the Traditional scenario
suffers the worst latency due to the great variation of latency
when coping with the traffic congestion in the jointed link.
Thank to wisely dealing with jointed links while selecting the k-
shortest paths from the set of path candidates, our proposed
approach is capable of reducing the latency. In addition, the
latency of MPTCP packets is significantly lower than that of
TCP packets because MPTCP tends to divide user datagrams
into shorter messages.

Figure 8. Transferring time comparison

 Finally, in order to emphasize the performance of our
proposed routing scheme for MPTCP-enable SDN networks, we
estimated the transferring time of large capacity video files. We
tested with 4 different file sizes and for each file, the transferring
time is measured 5 times and the average value is calculated and
plotted in Figure 8. One more time, the experimental results
confirm the best performance of our developed scheme
comparing to others’. It shows that, using MPTCP can help to
reduce transferring time greatly and applying efficient routing
scheme will help to save more time.

IV. CONCLUSION

In this paper, we have proposed an effective multipath
routing algorithm for MPTCP-enable software-defined
networks to create bandwidth-abundant and flexible future core
networks. Our proposed algorithm is able to find k-least-jointed
shortest paths by using k-shortest path algorithm incorporating
with a greedy strategy for the path selection. It can exploit the
advantage of MPTCP while being able to reduce the bottleneck

problem in the networks. Numerical experiments have been
employed to verified the performance of our proposal. It is
confirmed that, by reducing the number of jointed links in the
set of selected k-shortest paths, our solution outperforms the
traditional MPTCP approach as well as that of conventional TCP
networks.

REFERENCES

[1] J. Wu, C. Yuen, B. Cheng, M. Wang, and J. Chen, “Streaming High-
Quality Mobile Video with Multipath TCP in Heterogeneous Wireless

Networks,” IEEE Trans. Mob. Comput., vol. 15, no. 9, pp. 2345–2361,
2016, doi: 10.1109/TMC.2015.2497238.

[2] A. A. Barakabitze, I. H. Mkwawa, L. Sun, and E. Ifeachor, “QualitySDN:

Improving Video Quality using MPTCP and Segment Routing in
SDN/NFV,” 2018 4th IEEE Conf. Netw. Softwarization Work. NetSoft
2018, pp. 10–18, 2018, doi: 10.1109/NETSOFT.2018.8459917.

[3] “Kali OS.” https://www.kali.org/.

[4] A. A. Barakabitze, L. Sun, I. H. Mkwawa, and E. Ifeachor, “A Novel QoE-

Centric SDN-Based Multipath Routing Approach for Multimedia Services

over 5G Networks,” IEEE Int. Conf. Commun., vol. 2018-May, pp. 1–7,
2018, doi: 10.1109/ICC.2018.8422617.

[5] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “RFC 6182,

Architectural Guidelines for Multipath TCP Development,” IETF Secr.
RFC 6182, no. 6182, pp. 1–29, 2011.

[6] “MultiPath TCP - Linux Kernel implementation : Main - Home Page
browse,” Www.Multipath-Tcp.Org. 2020.

[7] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-defined networking: A

comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, 2015, doi:
10.1109/JPROC.2014.2371999.

[8] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S.

Azodolmolky, and S. Uhlig, “OpenFlow: Enabling Innovation in Campus
NetworksSoftware-defined networking: A comprehensive survey,” Proc.
IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[9] P. Rezende, S. Kianpisheh, R. Glitho, and E. Madeira, “An SDN-Based

Framework for Routing Multi-Streams Transport Traffic over Multipath

Networks,” IEEE Int. Conf. Commun., vol. 2019-May, pp. 1–6, 2019, doi:
10.1109/ICC.2019.8762061.

[10] K. D. Joshi and K. Kataoka, “SFO: SubFlow Optimizer for MPTCP in

SDN,” 26th Int. Telecommun. Networks Appl. Conf. ITNAC 2016, pp. 173–
178, 2017, doi: 10.1109/ATNAC.2016.7878804.

[11] H. Nam, D. Calin, and H. Schulzrinne, “Towards dynamic MPTCP Path

control using SDN,” IEEE NETSOFT 2016 - 2016 IEEE NetSoft Conf.
Work. Software-Defined Infrastruct. Networks, Clouds, IoT Serv., pp. 286–
294, 2016, doi: 10.1109/NETSOFT.2016.7502424.

[12] N. Kukreja, G. Maier, R. Alvizu, and A. Pattavina, “SDN based automated

testbed for evaluating multipath TCP,” 2016 IEEE Int. Conf. Commun.
Work. ICC 2016, pp. 718–723, 2016, doi: 10.1109/ICCW.2016.7503872.

[13] S. Zannettou, M. Sirivianos, and F. Papadopoulos, “Exploiting path

diversity in datacenters using MPTCP-aware SDN,” Proc. - IEEE Symp.
Comput. Commun., vol. 2016-Augus, pp. 539–546, 2016, doi:
10.1109/ISCC.2016.7543794.

[14] A. Hussein, I. H. Elhajj, A. Chehab, and A. Kayssi, “SDN for MPTCP: An

enhanced architecture for large data transfers in datacenters,” IEEE Int.
Conf. Commun., 2017, doi: 10.1109/ICC.2017.7996653.

[15] “Mininet website.” http://mininet.org/.

[16] “Ryu controller.” https://ryu-sdn.org/.

