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Abstract—Malware is growing rapidly in number and become
more and more sophisticated. To prevent them we always need to
collect more malware samples and update them to the classifier
or detection. In this paper, we will propose a method to update
new labeled samples of malware to the classifier easily without
re-train everything. The classifier can be updated both labeled
malware of an existed class or a new class. Our method also has
the ability to detect malware of unknown families. Experiments
are performed over the traditional computer malware dataset
and the IoT malware dataset. The results have shown that our
method can reach the macro F1 score almost the same re-train
everything but take significantly less time.

Index Terms—IoT malware, Computer malware, n-gram sys-
tem call, Open world classification

I. INTRODUCTION

Malware is a critical threat to the security of both computers
and IoT devices. The massive number of malware samples
require us to have automatic methods to analyze efficiently
and machine learning is one of them. Machine learning has
been used widely in malware analysis and brought a lot of
effects. An important task of machine learning is supervised
learning which includes classification. In the classification
task, we will learn from a given dataset of samples, each
sample has features and its discrete label. After the learning
process, we can assign a label for samples outside the dataset.
The effectiveness of the classifier depends on the goodness
of the training set. Over time, the training dataset needs to
be replenished continuously to help the classifier enhance the
performance (e.g detect malware of a family that was detected
recently). As demonstrated in [16], malware samples from the
same family can perform significantly different behavior over
time because the attacker always wants to evade detection or
change malware functions. So we not only need to update
malware of a new family but also malware samples of existed
families. The problem is how to update the classifier when the
training set is replenished with minimal effort.

Instance-based or memory-based learning has been used
widely in researches and kNN is one of the most popular
algorithms of that class. It provides the ability to update the
classifier easily when we have additional data. We just need to
add them to the training set and the classifier will be updated

* Coresponding author

automatically. The main problem of kNN is the high storage
requirements in order to contain the training data and make
classification decisions when a data sample arrives [1] and
prototype selection is a solution to solve that problem. Select
prototypes from a set help us to reduce the volume of data that
needs to be stored in the memory and have been interested in
many research like [4], [5], [6], [7]. In prototype selection,
we will select a smaller set that represents the whole dataset
called prototypes. In the malware analysis field, this method
was also used by Rieck et al. in [3] to compress the training
set and used for kNN classification. In the training phase,
prototypes were selected from the training set by the algorithm
that was introduced by Gonzalez in [2]. When predicting a test
sample, the classification decision will be given based on only
the prototypes, not the whole training set. Moreover, malware
samples of unknown families can be detected by comparing the
Euclidean distance to the nearest prototype with a threshold.

When we use the prototypes to represent the training set and
use them for kNN, the problem is how to update the prototype
list when new labeled data samples incoming. The easiest way
is re-selecting prototypes from the union dataset of both old
and new samples. However, it can take a long time to select
prototypes when the dataset is big and moreover the update
work may need to be performed many times.

In this paper, we will introduce a method to update the
prototype list when a new dataset incoming without re-extract
from the union dataset of both the old and new incoming
datasets. From the prototype list that was extracted before we
will consider the new dataset to decide to add prototypes to
the list or not in two ways: batch processing and continuous
processing. We will compare our proposed method with the
re-extract from everything method in terms of time required,
compression ratio, and classification performance when using
kNN with k=1. Experiments were performed in both the
computer malware dataset in [3] and the IoT malware dataset
[8]. The results show that our method can handle the new
dataset with significantly less time required and reach the same
classification performance and compression ratio.

The rest of our paper is organized as follows. Section 2
includes relating works. In section 3 we will overview the
feature extracting algorithm, the prototype extracting algo-
rithm that was proposed by Gonzalez, and the classification



algorithm based on prototypes. Section 4 is our contribution to
update classifiers when having additional samples arrive at the
training set. Section 5 is the overview of the computer malware
dataset and IoT malware dataset which we use to evaluate,
measures to evaluate the performance, and experiment results.

II. RELATED WORK

In recent years, open-world classification has been interested
in many works like [9], [10], [11] to solve the disadvantage of
the closed-world assumption of the classic classification task.
In the classic classification task, the learning algorithm takes
a fixed training data of many classes to build a classifier and
assumes all classes in the testing set have existed in the training
set. Unfortunately, in real life, an unknown class can appear
anytime. The open-world approach assumes that samples of
an unknown class can appear in the testing set. The classifiers
need to detect and learn knowledge from data of that class.
Fei et al. [9] presented 2 challenges to the classifier. First, the
classifier must have the ability to detect samples of unknown
classes. Second, the system needs to be able to selectively
update its models whenever a new class of data arrives without
re-training the whole system using the entire past and present
training data. Our method can update the classifier easily when
a new dataset incoming with a small amount of effort and has
the ability to detect samples of unknown malware families by
using Euclidean distance.

There are two main ways to update data to the classifier. In
the first way, data samples of known classes can be updated to
enhance the classifier’s performance for known classes. That
update method can be reviewed in [17], [18]. In the second
way, data samples of unknown classes are updated to the
classifier and after that, the classifier can classify data of that
class. That method has been researched in [8], [9]. Our method
can update the classifier with data samples of both known
classes and unknown classes by adding prototypes of the new
dataset to the old prototype list. There are some methods that
also have the ability to update data samples of both known
classes and unknown classes like [19] and [20] but they do
not detect data samples of unknown classes.

III. BACKGROUND

A. Feature extraction using systemcall and n-gram

Extracting the feature vector of malware using n-gram of
systemcall has been used in many researches like [3], [8],
[15]. In this paper, we will extract features that represent for
malware samples by using n-gram of the system call sequence
with n = 2. A 2-gram of the systemcall is a pair of system-
call that appear side by side in the system call sequence. For
example, the system call sequence is (open read read close)
then (open read), (read read) and (read close) are all 2-grams
of system call that appear in the system call sequence. Suppose
S = {s1, s2, . . . , sn} is the set of all possible 2-gram of
system calls (n = |S|), x is the systemcall sequence that was
created when run malware in the sandbox environment and x
will be represented by a point in a n-dimensional vector space.

Suppose v is a point in n-dimensional vector space and the
value of ith dimension is defined as follow:

vi =

{
1 if x contain the 2-gram si
0 otherwise

The coordinate of the point that represent for x in n-
dimensions vector space is

v

||v||
. In that way, we always

have the maximum Euclidean distance between two points
greater or equal to 0 and less than or equal

√
2. This features

extraction method has brought efficiency with both IoT and
computer malware in [3] and [8].

B. Extract prototype algorithm

Extracting prototypes of a dataset will give us a smaller
set that represents the whole data. In this paper, we will
use the method that was introduced by [2] which based on
the clustering approach. That method will create clusters in
the dataset and each cluster will have a header, each header
is considered as a prototype and the set of all headers will
represent the whole dataset.

We will keep a list of the distance of all data samples to
their closest prototype. In this paper, we use the Euclidean
distance which was used by Rieck et al. [3] to select prototypes
from a malware set. In the first, we have no prototype and we
will perform a loop to choose prototypes one-by-one from
the dataset. The first prototype will be chosen randomly from
the dataset with the same opportunity for all samples. Each
time a prototype is created, the distance of all data sample to
it closest prototype will be updated. The data sample that has
the farthest distance to its closest prototype will be considered
as a prototype candidate. If, the distance of the candidate to its
closest prototype greater than a threshold dp then the candidate
will be added to the prototype list, if not the algorithm will
stop.

C. Classification using prototypes

After extract prototypes from the training set, we can use
the prototype list to represent all data samples. We can classify
data samples based on the nearest prototypes using the 1NN
rule. When a data sample incoming, we will find the closest
prototype and assign a label to the sample based on it. To
detect samples of unknown classes, we use a threshold dr as
used by Rieck et al. at [3] to reject a sample that far from all
prototypes of the training set. Let x is the data sample that we
need to classify, z is the closest prototype of x in the training
set. The label of x will be decided as follow:

Label(x) =

{
label of z if d(x, z) ≤ dr
unknown otherwise

In which, d(x, z) is the Euclidean distance between x and
z.

IV. UPDATE PROTOTYPES ALGORITHMS

In this section, we will introduce two algorithms to update
the prototype list when a new dataset incoming and describe
how they differ. Both 2 algorithms inherit prototypes of the



previous dataset and only update to the list of the prototype
without re-extract from both the old and new datasets. The
Algorithm 1 handles all dataset in one run time and the
Algorithm 2 handles the new dataset sample-by-sample.

input : old prototypes: The prototype list of the
old dataset
dp: The distance threshold between a data

point to the nearest prototype
new dataset: The new dataset of malware

that needs to update
output: new prototypes : The prototype list

represents both the old and new dataset

new prototypes← old prototypes;
distance[x] =∞ for all x ∈ new dataset;
for x ∈ new dataset do

for z ∈ old prototypes do
if distance[x] > ||x− z|| then

distance[x] = ||x− z|| ;
end

end
end
while True do

max distance = max(distance);
if max distance > dp then

break;
end
choose z ∈ new dataset that
distance[z] = max dinstance ;
new prototypes← new prototypes ∪ {z} ;
distance[z] = 0.0;
for x ∈ new dataset and x 6= z do

if distance[x] > ||x− z|| then
distance[x] = ||x− z||;

end
end

end
Algorithm 1: Batch update prototype algorithm

With the Algorithm 1, when a new dataset incoming, we
will assign distance is the array that holds the distance of
all data in the new dataset to the nearest prototype that was
existed. If all elements of distance less than or equal threshold
dp then we don’t need to extract any prototype more. If not,
we will choose the data that has the farthest distance to its
nearest prototype to become a new prototype like the original
algorithm. With a new dataset with m samples and the number
of prototypes that existed is n. We will need a time complexity
O(n ∗m) to calculate the distance of m samples to its closest
prototype. After that, each time create a prototype we must
check to update all prototypes list. We can generate maximum
m prototypes in case all data samples are far from each other
and far from all existed prototypes. So, The time complexity
of the algorithm is O(m2 + n ∗m).

In the Algorithm 2, one data sample will be handle at one
time. We also calculate the distance to the closest prototype. If

H input : old prototypes: The prototype list of
the old dataset
dp: Maximum distance between a data point

to the nearest prototype
new data: The new data point represent

for a malware sample that needs to update
output: new prototypes : The prototype list

represents both the old and new dataset

new prototypes← old prototypes;
distance =∞;
for z ∈ old prototypes do

if distance > ||new data− z|| then
distance = ||new data− z|| ;

end
end
if distance > dp then

new prototypes← new prototypes ∪ {z}
end

Algorithm 2: Continuous update prototype algorithm

the distance to the closest prototype less than dp then no more
prototype is created. If not, it will become a new prototype
and will be added to the current prototype list. With each data,
we need to find the distance to all existed prototypes so the
complex of the algorithm is O(n) with n is the number of
existed prototypes.

In the Algorithm 2 the creation of a prototype was decided
when a data sample incoming so the order of data incoming
will affect the final prototype list. In the Algorithm 1, all
sample in the new dataset was considered one time and choose
new prototype candidate based on the farthest distance to the
current prototypes so the order of sample in the dataset is
not mattered. When we run Algorithm 1 to update the list
of the prototypes, there also have some differences compare
with using the re-extract method in the union dataset from
both the old and new dataset using the original algorithm.
In the first case, the first prototypes are only created in the
old data set, the creation of prototypes in the new dataset is
depended on the coverage of prototypes of the old dataset. In
the second case, the first prototype can be created in the old
dataset or new dataset and decide the creation of prototypes
overall the union dataset. However, in both two cases when
we have run complete, the distance between each data to its
nearest prototype is always less than dp so a prototype will
not represent data samples that too far from it and the distance
of two prototypes always greater than dp help us make sure
the number of prototypes isn’t too much.

V. EXPERIMENT

A. Datasets

To evaluate the efficiency of our proposed method we
will perform experiments in the traditional computer malware
dataset and IoT malware dataset. Both two datasets include
system call sequences when running malware samples in the
sandbox environment. The computer malware dataset was



taken from [3] with more than 3000 samples belong to 24
malware families. The IoT malware dataset was introduced
in our previous work at [8] with nearly 1000 samples belong
to 6 IoT malware families include Gafgyt (BASHLITE), Mi-
rai, MrBlack, Downloader-Mirai, Tsunami (Kaiten), Hajime.
All datasets include the system-call sequence when running
malware samples in the sandbox environment.

B. Experimental Settings and Metrics

To evaluate the ability to detect unknown malware families,
we will hold some families for only the testing purpose and
do not provide any sample in the training set. For example,
the number of classes for of training set will be chosen m% of
all classes and the value of m is changed in many values. For
the computer malware dataset, we will choose m = 25, 50, 75,
100 as performed by Shu et al. in [10]. For the IoT malware
dataset, because the number of classes is very small(6 classes)
so we will use the value of m bigger, we will choose m=
3/6*100%, 4/6*100%, 5/6*100%, 6/6*100% corresponding to
drop 3,2,1,0 classes from the training set. When using 100%
class for training that means all classes are seen and it is the
same as tradition classification. The data will be split randomly
to train and test 30 times and average the result. The value of
dp and dr is inherited from [3] for the computer malware
dataset and chosen by the method at [3] for the IoT malware
dataset. To compare the classification performance between
re-extract prototypes from all data and only update the new
prototypes we will use F1-score with the macro average as
used in [10], [9]. The F1 score with macro average is defined
as follow:

PRi =
TPi

TPi + FPi

RCi =
TPi

TPi + FNi

Fi =
2 ∗ PRi ∗RCi

PRi +RCi

macro F1 − score =

∑n
i=1 Fi

n

In which:
n: The number of class
TPi: The number of samples belong to the ith class and was
labeled as ith class
FPi: The number of samples do not belong to the ith class
and was labeled as ith class
FNi: The number of samples belong to the ith class and was
labeled as jth class (j 6= i)

In our experiment, The F1 score will be calculated over
m+ 1 classes, with m is the number of known classes in the
training set and 1 class represent all unknown families. That
means, when evaluating the performance we will consider all
unknown families in the testing set is belong to the same class
called ”unknown”. In the case use 100% of classes for training,
that like the traditional closed-world classification task, the F1
score is calculated over m classes.

To evaluate the performance of the classifier when update
samples of a new malware class, we will set up the exper-
iment as the script which was introduced by Fei et al. [9].
Our method has the ability to update a new class to the
classifier so we first will build the classifier from only 2
classes by extracting prototypes of that classes. We cumulative
update other classes from the training set to the classifier by
updating prototypes as Algorithm 1 and Algorithm 2. Note
that Algorithm 2 will handle each sample of the new arrive
class while Algorithm 1 handle all the samples at one time.
With the original method that use re-extract strategy, we will
extract prototypes from all data of the training set instead of
simulating all the process (start with 2 classes and re-extract
prototypes from all data when a new class arrives). That means
we will compare the performance of methods when the last
class arrives as performed in [9].

To evaluate the performance of the classifier when update
samples of a new malware class, we will split the training set
into 3 batches. First our algorithm will select prototypes from
the first batch after that update prototypes from the second
batch and third batch. With the re-extract strategy, we will
extract prototype from all data samples when a new batch
arrives.

C. Experimental Results

1) Classification Results: Update malware samples of new
families

In this experiment we will compare the performance of
two update methods and the re-extract strategy when update
data samples of known families. The macro F1-score over 2
datasets are shown in Figure 1a and Figure 1b.

We can see that both two update methods have the result
almost as same as performing re-extract prototypes from all
data. Note that the first prototype was chosen randomly so
sometimes the two update methods reach the higher macro
F1-score than the re-extract strategy, however, re-extract proto-
types usually bring a little higher performance than two update
methods.

2) Classification Results: Update malware samples of
known malware families

We will perform updated data samples for known malware
families based on the setting we have introduced above. The
results are shown in TABLE I and TABLE II. Based on the
results we can see that updating samples of known classes will
help us enhance the classifier’s performance for all methods.
In all cases with the same training set and the number of
known classes, the three methods have almost the same macro
F1-score. The continuous update method in the IoT malware
dataset can reach a little high performance than the two other
methods.

3) Compression ratio comparison: As we mentioned, one
of the main challenges of kNN algorithm is the memory
required. Extract prototypes from a set will help reduce the
memory required by selecting a small set that represents the
whole training set and so that speeds up the process to find the
nearest data point. Compression ratio is defined as the ratio



Training
data

Re-
extract
prototype

Batch up-
date

Continuous
update

100%
classes Batch 1 0.9818 0.9818 0.9818

Batch
1+2 0.9888 0.9887 0.9895

Batch
1+2+3 0.9905 0.9895 0.9895

75%
classes Batch 1 0.9189 0.9189 0.9189

Batch
1+2 0.9330 0.9350 0.9409

Batch
1+2+3 0.9466 0.9409 0.9409

50%
classes Batch 1 0.8771 0.8771 0.8771

Batch
1+2 0.9147 0.9233 0.9203

Batch
1+2+3 0.9261 0.9346 0.9328

25%
classes Batch 1 0.9118 0.9118 0.9118

Batch
1+2 0.9308 0.9253 0.9293

Batch
1+2+3 0.9285 0.9293 0.9293

TABLE I: Update data of known families for the computer
malware classifier

Training
data

Re-
extract
prototype

Batch up-
date

Continuous
update

100%
classes Batch 1 0.9818 0.9818 0.9818

Batch
1+2 0.9773 0.9787 0.9814

Batch
1+2+3 0.9791 0.9814 0.9814

83%
classes Batch 1 0.9208 0.9208 0.9208

Batch
1+2 0.9658 0.9671 0.9741

Batch
1+2+3 0.9723 0.9741 0.9741

66%
classes Batch 1 0.9239 0.9239 0.9239

Batch
1+2 0.9442 0.9457 0.9461

Batch
1+2+3 0.9452 0.9461 0.9461

50%
classes Batch 1 0.9257 0.9257 0.9257

Batch
1+2 0.9445 0.9446 0.9476

Batch
1+2+3 0.9472 0.9476 0.9476

TABLE II: Update data of known families for the IoT malware
classifier
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Fig. 1: Macro F1-score over the IoT malware dataset and the
computer malware dataset

Re-extract
prototype

Batch
update

Continuous
update

IoT malware
dataset 15.5% 15.6% 15.3%

Computer
malware
dataset

4.5% 4.5% 4.4%

TABLE III: Compresstion ratio in the IoT malware dataset and
the computer malware dataset

between the number of prototypes and the number of data in
the training set. We will compare the compression ratio of our
method with the original method which re-extract from all data
which include both old data samples and new incoming data
samples. The results are averaged from both update unknown
and know families .The results are shown in TABLE III.

4) Running Time Comparison: We also interested in the
run time of our update method and the original algorithm.
We will calculate run time of all method when update data
samples. With the update data of new families case, we will
compare run time of all method when the last class arrive
as performed in [10]. The results can be show in Figure 2a
and Figure 2b. With the update data of new families case, we
calculate the time to update the last batch (the 3rd batch in our
experiment). The results can be show in Figure 3a and Figure
3b. The compression ratio of both method is almost the same
and the continuous update method can reach a little good than
the two other methods.

Based on the results, we can see that the batch update
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Fig. 2: Running time summary for the last class

method and continuous update method take a lower time than
re-extract prototypes from all data when a class or a batch
arrives. The reason is very simple, with the batch update and
continuous update method we just need to handle samples of
the new class or the new batch when it arrives instead of re-
handle from the beginning.

VI. CONCLUSION AND FUTURE WORK

In this paper we have introduced our method to update
prototype list when a new dataset incoming in two ways: Batch
processing and continuous processing.
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