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Abstract— In the plethora of energy saving techniques 

developed in Internet of Things, adaptive sampling is one of the 

common methods to reduce the energy consumption of IoT 

nodes, at the cost of reducing the data accuracy. Additionally, 

the user cannot define the amount of energy to be saved when 

performing the adaptive sampling technique. This paper shows 

a case study applied our developed UDASA – The User-Driven 

Adaptive Sampling Algorithm for Massive Internet of Things on 

the Libelium-based environment monitoring systems. The aim 

of this work is to support users to trade-off between energy 

consumption on IoT devices versus the data precision. The 

results show that once applied UDASA in 4 days, the collected 

data only takes about 10% compared to that of without UDASA, 

while the system saves 9% of energy, and the data accuracy is 

about 84% after interpolation. 

Keywords—UDASA, Internet of Things, IoT, Power 

consumption, Libelium  

I. INTRODUCTION 

The Internet of Things is of the hosted topics in recently 
years. The number of IoT devices connected to the Internet 
has already surpassed the number of humans on the planet. By 
2025, the number of devices is expected to reach around 75.44 
billion worldwide [1]. Figure 1 shows the number of IoT 
devices and Non-IoT devices from 2017 to 2025. This is a vast 
platform for IoT solutions. IoT is one of the core technologies 
of the 4th industrial revolution, beside Artificial Intelligence, 
Bigdata, and Cloud Computing. Besides the conveniences that 

IoT brings, there are still challenges that are being studied e.g., 

security and privacy, scalability, devices management, 
standard, as so as energy consumption. 

Depending on applications running on its devices, the IoT 
node can always act and sense the environment data, then 
transfer it to IoT Gateway. Some IoT hardwares support IoT 
nodes change to sleep mode to reduce the energy consumption. 
Table I shows the comparsion of radio energy consumption of 
some IoT hardwares.  When in active mode, IoT nodes use 
many times more energy than in sleep mode.  

The periodic state change method is the simplest among 
IoT node energy saving methods. The IoT node only sleeps, 
then actives, senses and sends, then sleeps again. This process 
repeats periodically. To optimize this solution, the adaptive 
sampling is approached. The data transmission process is 
depended on data value. If the sensor data is stable, the 
sampling rate will be reduced to save energy. In contrast, if 
the sensor data fluctuates, the the sensing frequency will be 
increased to collect more data about current events. 

To the best of our knowledge, at this time, no work applies 
the above approach into IoT physical devices. To address 
these challenges, the authors re-implement The User-Driven 
Adaptive Sampling Algorithm for Massive Internet of Things 
UDASA [2] into Libelium devices to evaluate this algorithm 
when running in real IoT devices. After re-implementing from 
its pseudo-code by python programming language, the authors 
evaluate this algorithm by 2 test case: one sensor with large 
data fluctuations like a light sensor, and three sensors have 
stable data like temperature, humidity, pressure. 

 

Fig. 1. IoT devices connect to the Internet from 2015 to 2025 [1] 

TABLE I.  THE ENERGY CONSUMPTION OF SOME IOT DEVICES  

Devices Transmission 

Protocol 

Radio chip Active 

mode 

Sleep 

Mode 

TelosB Zigbee TI MSP430 1.8 mA 5.1μA 

ESP8266 802.11n Tensilica 
L106 

56mA 
RX/ 
120mA 
TX 

15mA 

Ra-02 LoRa SX1278 12.5mA 
RX/ 93 
mA TX 

1.6 mA 

Digi 
XBee® 3 

NB-IoT SARA-
R410M-
02B 

190 mA 20μA 

 



Our key contributions are summarized as follows: 

• Re-implement the UDASA into NOAA datasets 
to apply it to our specific scenarios. 

• performs UDASA on our Smart Cities - UiTiOt 
datasets 

• Take 2 scenarios: apply UDASA into one sensor 
and three sensors. 

The rest of this paper is organized as follows: Section 2 
lists and evaluates the work related to reducing the sampling 
frequency; Section 3 introduces our system architecture and 
the implementation of this system; In section 4, some 
scenarios are defined to evaluate UDASA when running in our 
system; This paper ends with our conclusion and discussion.  

II. BACKGROUND AND RELATED WORK 

This section introduces the IoT device components, and 

the previous works related to energy saving on IoT devices. 

An IoT sensor device is combined from 4 components: 

• Sensors and Actuators subsystem aim to sense 

environment data and take an action when receiving 

the control signal. 

• Processing subsystem handles all operations of IoT 

node. 

• Communication subsystem sends the IoT data 

collected from sensor to the applications and 

receives the control signal from users via the IoT 

gateway. 

• A power source subsystem provides the energy for 

all other components of IoT nodes.  

Besides the three first components, energy is also one of 

the research directions in IoTs. The related works on energy 

for IoT include optimize the schedule for sleep/active mode, 

change the threshold of sensing/sending, apply the role for 

sensor nodes. In sleep/active mode, the sensor devices are in 

sleep mode, by default. They only wake up when sense 

environment data and send it to the gateway. On the threshold 

setting case, the sampling can be set based on sensor node 

state, e.g., sensor node energy level, the sensor value features, 

the sensor connections, … In case 3, each sensor node is 

assigned a role, depending on the application running on the 

node, or on the location, power level of that node. Then, each 

sensor node is assigned a different frequency of sending 

sensor data. 

Beside the fixed sampling, a new technical can be apply 

for IoT, namely Adaptive Sampling. This technique supports 

change the sampling frequency based on historical data and 

the level of energy savings that users want. This technique 

helps to trade off the amount of data collected and the level 

of energy savings. If the sensor data is stable, the sampling 

rate will be decreased for energy saving. In contrast, the 

sampling rate will be increased if sensor data has a high 

frequency of change. 

According to [3], the sampling technique is cataloged as 

adaptive sampling and adaptive compression. Both of them 

aim to reduce resource consumption by changing the 

sampling rate of IoT nodes. The adaptive sampling’s benefits 

are fewer sensor sends and sends, and higher precision. In 

contrast, adaptive compression sample signals below a 

certain rate and later reconstruct them with high accuracy. In 

this subsection, the authors evaluate some approaches related 

to adaptive sampling. 

Trihinas et al [4] prensent AdaM – an open-source 

Adaptive Monitoring framework for IoT devices. The work 

incorporates two algorithms, e.g., adaptive sampling and 

adaptive filtering to correctly estimate the next event in the 

monitoring stream. The authors deploy this framework on 

Raspberry PI model B, Android Wear emulator and Fitbit 

Charge devices. At Result, AdaM reduces 74% data, while 

preserving a greater than 89% accuracy and energy 

consumption by 71%. 

In [2], Le Kim-Hung et al proposed UDASA – an 

adaptive sampling algorithm based on the energy saving level 

that defined by user. This proposes trade-off between energy 

consumption and data precision. The authors of [1] evaluate 

this propose via NOAA dataset and IoT datasets. The result 

show that UDASA can reduce 20 times collected data 

compared with the traditional fixed-rate approach when the 

data accuracy is 96.55%. 

The approach of B. Srbinovski et, al [5] is an adaptive 

sampling algorithm for energy-hungry sensors - an 

improvement, namely Energy-Aware Adaptive Sampling 

Algorithm (EASA) from the Adaptive Sampling Algorithm 

(ASA) [6]. The optimal sampling rate FN is calculated by 

Nyquist Theorem. EASA stabilizes the energy levels of 

sensor nodes at 60% after 36 days of operation, the number 

of ASA is 20%.  

In [7] Taimur Hafeez et el propose a real-time Adaptive 

Window Based Sampling (AWBS) algorithm to dynamically 

sample IoT time-series data on the edge devices. Sampling on 

the edge servers is more intelligent than on the IoT nodes. But 

the disadvance of this solution is the sampling and anomaly 

detection is performed by edge server so that it takes some 

time from the anomaly to the edge devices to recognize and 

handling it. The result of [7] shows that AWBS effectively 

reducing the data to 6.91%. 

A. Adaptive Sampling Definition 

Given the data set M, periodic sampling is the triggering 
of the sensor component's collection process for a fixed period 
of time T, where T is called the sampling time. This time 
interval can be 1 second, 1 minute, 1 hour, depending on the 
system and the settings, the ith data sample is collected at time 
ti = i*T. For example, T = 2s, sample M5 will be collected at 
time t5 = 5*2 = 10s. Because of its simplicity that periodic 
sampling is widely used. 

However, if the context is in the case of battery-based IoTs 
devices with a limited power source and low processing 
capacity, it presents many limitations. For example, if 

 

Fig. 2. The problem of periodic sampling 

 



consecutive values (Mi-1, Mi, Mi+1) are all unchanged, it can 
take a lot of energy to collect these "nonvalue” data. 

If we take the sampling time T small e.g., 1 second, a large 
amount of data will be generated and distributed over the 
network for processing and storage, which can seriously affect 
the battery of the device. But if the sampling time is large, e.g., 
5 second, the change of data cannot be detected and collected. 

The Figure 2 shows the fixed sampling at 1 second and 5 
second. At this figure, if the sampling is 5 second the data at 
time T45, T102, and T107 was not sensed and sent although the 
data at these times is high value. Therefore, the choice of T is 
difficult, it needs to depend on the change of data over time. 

For all these reasons, adaptive sampling was developed to 
dynamically change the sampling time to reduce the amount 
of data collected and dramatically save battery life. Figure 3 
indicates that data trends have been preserved and that most 
periodic sampling concerns have been resolved. Adaptive 
sampling defines a dynamic Ti+1 sampling time in the interval 
[Tmin, Tmax], calculated from a data stream M based on f(M). 
Adaptive sampling aims to provide a maximum value of Ti+1 

∈ [Tmin, Tmax] to collect sample Mi+1 from M based on f(M) 

while minimizing ERR to ensure accuracy of f(M). Therefore, 
the problem is summarized with the following equation [2] [4]: 

𝑇𝑖+1 = 𝑎𝑟𝑔𝑚𝑎𝑥 {𝑓(𝑀𝑖 , 𝑀, 𝐸𝑅𝑅) | 𝑎𝑟𝑔𝑚𝑖𝑛 {𝐸𝑅𝑅},  
                   𝑇𝑖+1                                             

                                                             𝑇𝑖+1 ∈   [𝑇𝑚𝑎𝑥 , 𝑇𝑚𝑖𝑛]}  
 

The accuracy of data after adaptive sampling is expressed 

as ERR; if ERR → 0 results in sampling time Ti+1 → Tmin, the 

purpose of adaptive sampling is defeated. As a result, we need 
an algorithm capable of balancing data accuracy and energy 
savings for the device. 

B. User-Driven Adaptive Sampling Algorithm 

1) Related definitions 

Normalized Mean Error (NME) [2] represents the match 

between the original data and the data after being 

reconstructed using the adaptive sampling algorithm. It is 

defined as follows: 

𝑁𝑀𝐸 =  
1

𝑛
∑| �̂�𝑖 −  𝑥𝑖| ∗ 100%

𝑛

𝑖=1

 

 

Here, �̂�𝑖 denotes the normalized ith data in the 

reconstructed dataset, 𝑥𝑖 represents the normalized ith data in 

the original dataset, and n is the total data. The lower the 

NME value, the more accurately the reproducible dataset 

from the algorithm. Our team uses the python language 

scipy.interpolate library to perform simple interpolation 

before calculating the NME. 

However, due to different numerical ranges of the data, for 

example, the measured lux is usually between 0 and 20000, 

the pH is between 0 and 14. Therefore, a normalization step 

is necessary. before calculating the NME value. The 

following is how the value of 𝑥𝑖 in the data collection M is 

normalized: 

𝑥𝑖 =  
𝑥𝑖 − min (𝑀)

max(𝑀) −  min (𝑀)
 

 

Sampling Fraction (SF) [2] defines the proportion of 

samples remaining in the data set after using UDASA. It is 

defined as follows: 

𝑆𝐹 =  
�̂�

𝑛
 

Where �̂� is the size of the data after adaptive sampling. The 

lower SF value, the more data is saved, and the accuracy 

degrades. 

2) An overview of the algorithm 
In this segment, we research the issues surrounding 

UDASA to reimplement it on our devices.  

First, the algorithm evaluates the dataset's volatility based 
on the input parameters (1) (Figure 4) by comparing the shift 
in Median Absolute Deviation between the Mi data and the 
average of each deviation over the last N data points (2). 
Through the advanced sigmoid function (3), D will change the 

fchange from 1 → n. n, referred to as the saving level; users can 

fully alter or modify n depending on the desired level; the 
larger n, the greater the savings. Finally, a conversion function 
converts the change value to the sampling time (4). The more 
the data fluctuates, the closer the sampling time gets to the 
minimum value of the range (Tbase, for periodic sampling, the 

 

Fig. 3. The adaptive sampling example 

 

Fig. 4. An overview of UDASA 

TABLE II.  TABLE OF NOTATIONS  

Notation Description 

M 

The input dataset, includes data points (M1, M2, M3,… 

Mn) 

Mi 
The ith data point on M which collected at time Ti. This is 
the last data point of M at the consider time 

M’ 
M' is the reconstructed dataset of M after performing the 

adaptive sampling 

f(M) The estimation models 

Ti+1 Sampling time of data collection at time i + 1 

ERR The difference between M' and M 

 



sampling time is Tbase). In contrast, if the data fluctuates just 
slightly, the sampling time will gradually approach the 

maximum value of the range (n* Tbase). In summary, Ti+1 ∈ 

[Tbase, n*Tbase] with n user input. The algorithm solved the 
trade-off mentioned above between accuracy and energy 
savings. 

III. PROPOSED SYSTEM 

A. System design 

In this section, we will demonstrate our IoT system namely 
SmartCities based on Libelium devices. In this system the 
sensor values e.g., temperature, humidity, light, … are 
collected, sent, and stored to a cloud database via the gateway. 
The connection beside sensor nodes and gateway is Zigbee, 
and gateway connects to cloud by Ethernet connection. The 
database is put on UIT cloud.  After that, we use the UDASA 
on this system’s data. The web application is also used to run 
UDASA. The aim of deploying UDASA is to experiment and 
to evaluate the algorithm from theory to practice. In general, 
the system is made up of three major components: a cloud data 
center, a gateway, and an end-device. The Figure 5 shows the 
high-level design of SmartCities system. 

Cloud data center: A component used to deploy client-

side services such as web services, where users can enter 
parameters for UDASA, demonstrating versatility by using 
different parameters for each type of sensor and managing 
devices connected to the system. The sensors are included, and 
all of them are saved in the database. In terms of the database, 
it is the location where device information, sensor values for 
each device, and other data are stored. Furthermore, the web 
application allows for real-time analysis of the results 
obtained by the use of UDASA, as well as visual 
representation of the device's battery life while using and not 
using the algorithm. 

Gateway: This component is located between the cloud 
data center and the end-device. The gateway structure 
integrates embedded devices to receive sensor values from the 
end-device portion, forwards these values to the cloud 
component to update the database, and refreshes the web 
application. This part also performs the most important task - 

computation of sampling frequency values from UDASA, 
which is determined after each data point is obtained to ensure 
the algorithm is computed with the continuous change of 
values from the setting. The sampling frequency is continually 
suggested, and the result is returned to the end-device.  

End-device: The end-device is made up of sensors that 
collect and send values to the gateway, and devices that attach 
to the gateway in a star pattern. The primary function of this 
component is to acquire constantly changing sampling 
frequencies from the gateway component in order to change 
the device's sampling frequency, well with the ultimate goal 
of saving energy. 

B. System implementation 

This section describes the proposed system's use of 
modern technologies: 

Cloud data center: In consideration of the web 
application, we use a Laravel framework-based backend 
server. The database is built with MySQL, as recommended 
by Laravel, and React.js, a JavaScript library for creating user 
interfaces. MQTT, an ideal communication channel for IoTs 
applications, will be deployed in this component to 
communicate between the cloud data center and the gateway. 
For ease of deployment, all will be deployed on the Docker 
Container. 

Gateway: We use a device with the processor: Intel (R) 
Core (TM) i5-6200U CPU @ 2.30 GHz, 2401 MHz, 8 GB of 
RAM attached to Waspmote Gateway 802.15.4 PRO to 
receive data from the device through the Zigbee protocol.  

End-device: Waspmote is a libelium advanced chip used 
in this component to add sensors by combining additional 
circuit boards (Smart Cities PRO, Smart Agriculture) (BME, 
lux). To communicate with the gateway, it uses the Xbee 
802.15.4 module. 

IV. EXPERIMENTAL RESULTS 

In this section, we demonstrate the results obtained 

through our experiments and data from our system. Part A re-

implements UDASA on NOAA datasets to apply it to our 

specific scenarios. The next one, Part B performs UDASA on 

our Smart Cities - UiTiOt datasets to further evaluate the 

obtained parameters of the algorithm. In Part C, we 

implement UDASA just done above on our system and tested 

for a sensor. Finally, like Part C, but Part D will test collect a 

variety of sensors. Both two scenarios are adjusted for 

different savings levels on our system. 

A. Re-implement UDASA on NOAA datasets 

“National Oceanic and Atmospheric Administration 

(NOAA)” provides a set of real-time data about water quality 

in a place called “Jamstown”. Data is maintained from 2008 

to present, interval sampling is 1 hour. We extracted the DO 

and turbidity values from December 15, 2016 to March 15, 

2017.   

From [2]’s pseudo-code, we used the python language to 

re-implement UDASA. By different methods, we evaluated 

to know what is the correct UDASA on the NOAA dataset 

from the suggestion of [2]. Our best results are shown in 

Table III.  

The energy-saving value is changed at 1, 3, 5, 10, 15, 20, 

with 1 indicating no savings and this being the initial dataset. 

The window size is set to 30. 

 

Fig. 5. The high-level design of the proposed system model 



B. Applying UDASA on Smart Cities - UiTiOt datasets 

We continue to use UDASA in section A on the Smart 

Cities - UiTiOt dataset to assess the potential for balancing 

saving data points obtained while maintaining the datasets' 

accuracy. 

Smart Cities - UiTiOt provides a set of real-time data 

about different environmental data on the 12th floor of 

Building E, University of Information Technology - VNU-

HCM. The dataset was deployed from July 2020 to the 

present, with interval sampling every 15 minutes. We will 

extract the typical values as lux, temperature, humidity, 

pressure from March 1 to April 23, 2021. The reason for this 

implementation is that these values would fluctuate 

significantly during the peak dry season in Ho Chi Minh City.  

The energy-saving levels are set to 1, 3, 5, 10, 15, 20, and 

window size is 30, with a Tbase of 15 minutes applied to the 4 

data sets mentioned above. Figure 6 shows that the data 

precision is maintained.  

Changes in the energy-saving level n significantly 

decreased the number of data points. E.g., at temperature, n 

is 3, the number of data points to collect is just around 44% 

of the original data (from 5116 data points to 2272 data 

points). The NME value is 1.35%, implying that the dataset 

after using the UDASA is only 1.35% different from the 

original dataset and has an accuracy of 98.65%. As the n 

value is increased to 5, the number of data points decreases 

by approximately 4.3 times, and the precision is marginally 

reduced to 98.11%. Similarly, as n is increased in steps until 

it reaches 20, the accuracy drops to 95.12%.  

The sensor values for lux, humidity, and pressure were 

similar, particularly pressure value when n = 3, NME value 

reached 0.43%, equivalent to 99.57% accuracy. Figure 6 

depicts the trend of the datasets, where the data at lux 

fluctuates significantly (from more than 20,000 to 0), so the 

NME value of lux is higher than the other values when we 

surveyed (14.56% with n = 20). See Table V for more 

information. 

C. UDASA is deployed on the system in case to collect a 

sensor value 

We continue to use UDASA on our systems with devices 

from the libelium suite to measure the device's actual power 

consumption. In this case, we use waspmote to collect the lux 

values.  Two waspmotes were gathered at the same time and 

location; one waspmote will be collected normally, while the 

other will be deployed on UDASA.  Our system will 

alternately set the value of energy-saving level n to 1, 3, 5, 

and 10. The initial dataset for the algorithm is from the Smart 

TABLE III.  OUR IMPLEMENTATION RESULTS OF UDASA ON NOAA 

DATASETS 

Datasets Metrics 
Saving Levels 

1 3 5 10 15 20 

D
O

 

Number 
of 

Samples 

2090 1001 588 263 173 134 

SF 1 0.48 0.28 0.13 0.08 0.06 

NME 0 1.73 2.52 4.85 5.54 5.77 

T
u

rb
in

ity
 

Number 

of 
Samples 

2070 978 552 238 167  133 

SF 1 0.47 0.27 0.11 0.08 0.06 

NME 0 2.46 3.56 6.76 6.92 6.93 

 

TABLE IV.  OUR IMPLEMENTATION RESULTS OF UDASA ON SMART 

CITIES - UITIOT DATASETS  

D
a

ta
sets 

Metrics 

Saving Levels 

1 3 5 10 15 20 

L
u
x

 

Number 

of 

Samples 

5184 2571 1648 740 422 297 

SF 1 0.5 0.32 0.14 0.08 0.06 

NME 0 3.93 4.7 7.47 11.43 14.56 

T
em

p
eratu

re 

Number 
of 

Samples 

5116 2272 1179 539 370 285 

SF 1 0.44 0.23 0.11 0.07 0.06 

NME 0 1.35 1.89 2.91 3.93 4.88 

H
u

m
id

ity
 

Number 

of 

Samples 

5116 2200 1126 540 370 285 

SF 1 0.43 0.22 0.11 0.07 0.06 

NME 0 1.2 1.8 3.02 4.18 5.44 

P
ressu

re 

Number 

of 

Samples 

5116 2360 1278 542 370 285 

SF 1 0.46 0.25 0.11 0.07 0.06 

NME 0 0.43 0.62 1.08 1.7 2.57 

 

 

Fig. 6. The similarity among data trends with different saving levels on lux, 

temperature, humidity, pressure datasets 

TABLE V.  LUX  DATASET WITH DIFFERENT SAVING LEVELS 

Datasets Metrics 
Saving Levels 

1 3 5 10 

Lux 

Number 
of 

Samples 

384 175 116 64 

SF 1 0.56 0.35 0.1 

NME 0 3.83 13.9 28.11 

Decline 

of pin 
0 5 6 6 

 



Cities - UiTiOt datasets, November 1, 2020, from 0:00 to 

8:30.  

Our web application collects and displays all scenariors’s 

results (see Figure 7). Table V displays the reports from each 

case over the course of 4 days (total of 12 days). For savings 

levels of 3, 5, and 10, the NME values are 3.83%, 13.9%, and 

28.11%, respectively. Specifically, the highest battery saving 

that the device will view is 6% over 4 days.  

D. UDASA is deployed on the system in case to collect 

many sensor values 

In fact, the waspmote collects not just one sensor value 

but many. We conducted to collect three values of 

temperature, humidity, and pressure simultaneously. After 

each collection, we will select the lowest sampling frequency 

value to adjust the sampling frequency on the waspmote. 

Since the Tbase value of the UDASA output is the lowest, the 

accuracy of the three datasets is still assured after using 

UDASA.  

Table VI show that n = 3, the minimum NME rate of 

temperature was 5.66% (accuracy is 94.34%), and it only 

needed to collect 56% of the initial amount of data. When n 

= 10, the sum of data collected is only 10%, but NME is 

15.44% (accuracy is 84.56%). The precision was severely 

reduced. Same for humidity and pressure values. In general, 

the error rate is higher than Part C due to the need to balance 

the 3 sensor values when calculating the sampling frequency. 

Since the system requires more power for the sensors 

component, the maximum energy savings achieved by the 

display device over 4 days is 9%. 

V. CONCLUSIONS 

In this work, we applied the UDASA [2] into the 

environmental monitoring station namely Smart Cities – 

UiTiOt system. UDASA is the User-Driven Adaptive 

Sampling Algorithm that estimates in realtime the optimal 

sampling frequency for IoT devices based on the changes of 

data in history. This algorithm strikes a balance between the 

size of the data collected and the corresponding energy 

savings. From the pseudo-code of UDASA, we re-implement 

this algorithm by python programming language, and apply 

it into our system. We implement several scenarios with 

different types of sensors. In the only one Lux sensor case, 

the system only collected 64 data points when if without 

UDASA, the system must collect 384 data points. And the 

energy-saving at this scenario is 6% corresponding to n = 10. 

In the scenario which uses 3 sensors Humidity, Temperature, 

and Pressure, our best result is 9% energy-saving when n = 

10, and the sum of data collected is only 10% compared to 

fixed time sampling. 
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Fig. 7. Data trends are shown on our system 

TABLE VI.  TEMPERATURE, HUMIDITY, PRESSURE DATASETS WITH 

DIFFERENT SAVING LEVELS 

Datasets 

Metrics 
Saving Levels 

1 3 5 10 

Number 

of 

Samples 

385 217 136 40 

SF 1 0.56 0.35 0.1 

Temperature 

NME 0 

5.66 7.91 15.44 

Humidity 7.84 10.47 15.34 

Pressure 2.07 7.66 16.89 

 
Decline 

of pin 
0 7 6 9 

 


