
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Adaptive Sampling for Saving Energy: A Case

Study on The Libelium-based Environment

Monitoring Systems

Phat PHAN-TRUNG

Faculty of Computer Networks &

Communications

University of Information Technology -

Vietnam National University - Ho Chi

Minh City - VNUHCM

Ho Chi Minh, Viet Nam

phatpt@uit.edu.vn

Thuat NGUYEN-KHANH

Faculty of Computer Networks &

Communications

University of Information Technology -

Vietnam National University - Ho Chi

Minh City - VNUHCM

Ho Chi Minh, Viet Nam

thuatnk@uit.edu.vn

Quan LE-TRUNG

Faculty of Computer Networks &

Communications

University of Information Technology -

Vietnam National University – Ho Chi

Minh City - VNUHCM

Ho Chi Minh, Viet Nam

quanlt@uit.edu.vn

Abstract— In the plethora of energy saving techniques

developed in Internet of Things, adaptive sampling is one of the

common methods to reduce the energy consumption of IoT

nodes, at the cost of reducing the data accuracy. Additionally,

the user cannot define the amount of energy to be saved when

performing the adaptive sampling technique. This paper shows

a case study applied our developed UDASA – The User-Driven

Adaptive Sampling Algorithm for Massive Internet of Things on

the Libelium-based environment monitoring systems. The aim

of this work is to support users to trade-off between energy

consumption on IoT devices versus the data precision. The

results show that once applied UDASA in 4 days, the collected

data only takes about 10% compared to that of without UDASA,

while the system saves 9% of energy, and the data accuracy is

about 84% after interpolation.

Keywords—UDASA, Internet of Things, IoT, Power

consumption, Libelium

I. INTRODUCTION

The Internet of Things is of the hosted topics in recently
years. The number of IoT devices connected to the Internet
has already surpassed the number of humans on the planet. By
2025, the number of devices is expected to reach around 75.44
billion worldwide [1]. Figure 1 shows the number of IoT
devices and Non-IoT devices from 2017 to 2025. This is a vast
platform for IoT solutions. IoT is one of the core technologies
of the 4th industrial revolution, beside Artificial Intelligence,
Bigdata, and Cloud Computing. Besides the conveniences that

IoT brings, there are still challenges that are being studied e.g.,

security and privacy, scalability, devices management,
standard, as so as energy consumption.

Depending on applications running on its devices, the IoT
node can always act and sense the environment data, then
transfer it to IoT Gateway. Some IoT hardwares support IoT
nodes change to sleep mode to reduce the energy consumption.
Table I shows the comparsion of radio energy consumption of
some IoT hardwares. When in active mode, IoT nodes use
many times more energy than in sleep mode.

The periodic state change method is the simplest among
IoT node energy saving methods. The IoT node only sleeps,
then actives, senses and sends, then sleeps again. This process
repeats periodically. To optimize this solution, the adaptive
sampling is approached. The data transmission process is
depended on data value. If the sensor data is stable, the
sampling rate will be reduced to save energy. In contrast, if
the sensor data fluctuates, the the sensing frequency will be
increased to collect more data about current events.

To the best of our knowledge, at this time, no work applies
the above approach into IoT physical devices. To address
these challenges, the authors re-implement The User-Driven
Adaptive Sampling Algorithm for Massive Internet of Things
UDASA [2] into Libelium devices to evaluate this algorithm
when running in real IoT devices. After re-implementing from
its pseudo-code by python programming language, the authors
evaluate this algorithm by 2 test case: one sensor with large
data fluctuations like a light sensor, and three sensors have
stable data like temperature, humidity, pressure.

Fig. 1. IoT devices connect to the Internet from 2015 to 2025 [1]

TABLE I. THE ENERGY CONSUMPTION OF SOME IOT DEVICES

Devices Transmission

Protocol

Radio chip Active

mode

Sleep

Mode

TelosB Zigbee TI MSP430 1.8 mA 5.1μA

ESP8266 802.11n Tensilica
L106

56mA
RX/
120mA
TX

15mA

Ra-02 LoRa SX1278 12.5mA
RX/ 93
mA TX

1.6 mA

Digi
XBee® 3

NB-IoT SARA-
R410M-
02B

190 mA 20μA

Our key contributions are summarized as follows:

• Re-implement the UDASA into NOAA datasets
to apply it to our specific scenarios.

• performs UDASA on our Smart Cities - UiTiOt
datasets

• Take 2 scenarios: apply UDASA into one sensor
and three sensors.

The rest of this paper is organized as follows: Section 2
lists and evaluates the work related to reducing the sampling
frequency; Section 3 introduces our system architecture and
the implementation of this system; In section 4, some
scenarios are defined to evaluate UDASA when running in our
system; This paper ends with our conclusion and discussion.

II. BACKGROUND AND RELATED WORK

This section introduces the IoT device components, and

the previous works related to energy saving on IoT devices.

An IoT sensor device is combined from 4 components:

• Sensors and Actuators subsystem aim to sense

environment data and take an action when receiving

the control signal.

• Processing subsystem handles all operations of IoT

node.

• Communication subsystem sends the IoT data

collected from sensor to the applications and

receives the control signal from users via the IoT

gateway.

• A power source subsystem provides the energy for

all other components of IoT nodes.

Besides the three first components, energy is also one of

the research directions in IoTs. The related works on energy

for IoT include optimize the schedule for sleep/active mode,

change the threshold of sensing/sending, apply the role for

sensor nodes. In sleep/active mode, the sensor devices are in

sleep mode, by default. They only wake up when sense

environment data and send it to the gateway. On the threshold

setting case, the sampling can be set based on sensor node

state, e.g., sensor node energy level, the sensor value features,

the sensor connections, … In case 3, each sensor node is

assigned a role, depending on the application running on the

node, or on the location, power level of that node. Then, each

sensor node is assigned a different frequency of sending

sensor data.

Beside the fixed sampling, a new technical can be apply

for IoT, namely Adaptive Sampling. This technique supports

change the sampling frequency based on historical data and

the level of energy savings that users want. This technique

helps to trade off the amount of data collected and the level

of energy savings. If the sensor data is stable, the sampling

rate will be decreased for energy saving. In contrast, the

sampling rate will be increased if sensor data has a high

frequency of change.

According to [3], the sampling technique is cataloged as

adaptive sampling and adaptive compression. Both of them

aim to reduce resource consumption by changing the

sampling rate of IoT nodes. The adaptive sampling’s benefits

are fewer sensor sends and sends, and higher precision. In

contrast, adaptive compression sample signals below a

certain rate and later reconstruct them with high accuracy. In

this subsection, the authors evaluate some approaches related

to adaptive sampling.

Trihinas et al [4] prensent AdaM – an open-source

Adaptive Monitoring framework for IoT devices. The work

incorporates two algorithms, e.g., adaptive sampling and

adaptive filtering to correctly estimate the next event in the

monitoring stream. The authors deploy this framework on

Raspberry PI model B, Android Wear emulator and Fitbit

Charge devices. At Result, AdaM reduces 74% data, while

preserving a greater than 89% accuracy and energy

consumption by 71%.

In [2], Le Kim-Hung et al proposed UDASA – an

adaptive sampling algorithm based on the energy saving level

that defined by user. This proposes trade-off between energy

consumption and data precision. The authors of [1] evaluate

this propose via NOAA dataset and IoT datasets. The result

show that UDASA can reduce 20 times collected data

compared with the traditional fixed-rate approach when the

data accuracy is 96.55%.

The approach of B. Srbinovski et, al [5] is an adaptive

sampling algorithm for energy-hungry sensors - an

improvement, namely Energy-Aware Adaptive Sampling

Algorithm (EASA) from the Adaptive Sampling Algorithm

(ASA) [6]. The optimal sampling rate FN is calculated by

Nyquist Theorem. EASA stabilizes the energy levels of

sensor nodes at 60% after 36 days of operation, the number

of ASA is 20%.

In [7] Taimur Hafeez et el propose a real-time Adaptive

Window Based Sampling (AWBS) algorithm to dynamically

sample IoT time-series data on the edge devices. Sampling on

the edge servers is more intelligent than on the IoT nodes. But

the disadvance of this solution is the sampling and anomaly

detection is performed by edge server so that it takes some

time from the anomaly to the edge devices to recognize and

handling it. The result of [7] shows that AWBS effectively

reducing the data to 6.91%.

A. Adaptive Sampling Definition

Given the data set M, periodic sampling is the triggering
of the sensor component's collection process for a fixed period
of time T, where T is called the sampling time. This time
interval can be 1 second, 1 minute, 1 hour, depending on the
system and the settings, the ith data sample is collected at time
ti = i*T. For example, T = 2s, sample M5 will be collected at
time t5 = 5*2 = 10s. Because of its simplicity that periodic
sampling is widely used.

However, if the context is in the case of battery-based IoTs
devices with a limited power source and low processing
capacity, it presents many limitations. For example, if

Fig. 2. The problem of periodic sampling

consecutive values (Mi-1, Mi, Mi+1) are all unchanged, it can
take a lot of energy to collect these "nonvalue” data.

If we take the sampling time T small e.g., 1 second, a large
amount of data will be generated and distributed over the
network for processing and storage, which can seriously affect
the battery of the device. But if the sampling time is large, e.g.,
5 second, the change of data cannot be detected and collected.

The Figure 2 shows the fixed sampling at 1 second and 5
second. At this figure, if the sampling is 5 second the data at
time T45, T102, and T107 was not sensed and sent although the
data at these times is high value. Therefore, the choice of T is
difficult, it needs to depend on the change of data over time.

For all these reasons, adaptive sampling was developed to
dynamically change the sampling time to reduce the amount
of data collected and dramatically save battery life. Figure 3
indicates that data trends have been preserved and that most
periodic sampling concerns have been resolved. Adaptive
sampling defines a dynamic Ti+1 sampling time in the interval
[Tmin, Tmax], calculated from a data stream M based on f(M).
Adaptive sampling aims to provide a maximum value of Ti+1

∈ [Tmin, Tmax] to collect sample Mi+1 from M based on f(M)

while minimizing ERR to ensure accuracy of f(M). Therefore,
the problem is summarized with the following equation [2] [4]:

𝑇𝑖+1 = 𝑎𝑟𝑔𝑚𝑎𝑥 {𝑓(𝑀𝑖 , 𝑀, 𝐸𝑅𝑅) | 𝑎𝑟𝑔𝑚𝑖𝑛 {𝐸𝑅𝑅},
 𝑇𝑖+1

 𝑇𝑖+1 ∈ [𝑇𝑚𝑎𝑥 , 𝑇𝑚𝑖𝑛]}

The accuracy of data after adaptive sampling is expressed

as ERR; if ERR → 0 results in sampling time Ti+1 → Tmin, the

purpose of adaptive sampling is defeated. As a result, we need
an algorithm capable of balancing data accuracy and energy
savings for the device.

B. User-Driven Adaptive Sampling Algorithm

1) Related definitions

Normalized Mean Error (NME) [2] represents the match

between the original data and the data after being

reconstructed using the adaptive sampling algorithm. It is

defined as follows:

𝑁𝑀𝐸 =
1

𝑛
∑| 𝑥̂𝑖 − 𝑥𝑖| ∗ 100%

𝑛

𝑖=1

Here, 𝑥̂𝑖 denotes the normalized ith data in the

reconstructed dataset, 𝑥𝑖 represents the normalized ith data in

the original dataset, and n is the total data. The lower the

NME value, the more accurately the reproducible dataset

from the algorithm. Our team uses the python language

scipy.interpolate library to perform simple interpolation

before calculating the NME.

However, due to different numerical ranges of the data, for

example, the measured lux is usually between 0 and 20000,

the pH is between 0 and 14. Therefore, a normalization step

is necessary. before calculating the NME value. The

following is how the value of 𝑥𝑖 in the data collection M is

normalized:

𝑥𝑖 =
𝑥𝑖 − min (𝑀)

max(𝑀) − min (𝑀)

Sampling Fraction (SF) [2] defines the proportion of

samples remaining in the data set after using UDASA. It is

defined as follows:

𝑆𝐹 =
𝑚̂

𝑛

Where 𝑚̂ is the size of the data after adaptive sampling. The

lower SF value, the more data is saved, and the accuracy

degrades.

2) An overview of the algorithm
In this segment, we research the issues surrounding

UDASA to reimplement it on our devices.

First, the algorithm evaluates the dataset's volatility based
on the input parameters (1) (Figure 4) by comparing the shift
in Median Absolute Deviation between the Mi data and the
average of each deviation over the last N data points (2).
Through the advanced sigmoid function (3), D will change the

fchange from 1 → n. n, referred to as the saving level; users can

fully alter or modify n depending on the desired level; the
larger n, the greater the savings. Finally, a conversion function
converts the change value to the sampling time (4). The more
the data fluctuates, the closer the sampling time gets to the
minimum value of the range (Tbase, for periodic sampling, the

Fig. 3. The adaptive sampling example

Fig. 4. An overview of UDASA

TABLE II. TABLE OF NOTATIONS

Notation Description

M

The input dataset, includes data points (M1, M2, M3,…

Mn)

Mi
The ith data point on M which collected at time Ti. This is
the last data point of M at the consider time

M’
M' is the reconstructed dataset of M after performing the

adaptive sampling

f(M) The estimation models

Ti+1 Sampling time of data collection at time i + 1

ERR The difference between M' and M

sampling time is Tbase). In contrast, if the data fluctuates just
slightly, the sampling time will gradually approach the

maximum value of the range (n* Tbase). In summary, Ti+1 ∈

[Tbase, n*Tbase] with n user input. The algorithm solved the
trade-off mentioned above between accuracy and energy
savings.

III. PROPOSED SYSTEM

A. System design

In this section, we will demonstrate our IoT system namely
SmartCities based on Libelium devices. In this system the
sensor values e.g., temperature, humidity, light, … are
collected, sent, and stored to a cloud database via the gateway.
The connection beside sensor nodes and gateway is Zigbee,
and gateway connects to cloud by Ethernet connection. The
database is put on UIT cloud. After that, we use the UDASA
on this system’s data. The web application is also used to run
UDASA. The aim of deploying UDASA is to experiment and
to evaluate the algorithm from theory to practice. In general,
the system is made up of three major components: a cloud data
center, a gateway, and an end-device. The Figure 5 shows the
high-level design of SmartCities system.

Cloud data center: A component used to deploy client-

side services such as web services, where users can enter
parameters for UDASA, demonstrating versatility by using
different parameters for each type of sensor and managing
devices connected to the system. The sensors are included, and
all of them are saved in the database. In terms of the database,
it is the location where device information, sensor values for
each device, and other data are stored. Furthermore, the web
application allows for real-time analysis of the results
obtained by the use of UDASA, as well as visual
representation of the device's battery life while using and not
using the algorithm.

Gateway: This component is located between the cloud
data center and the end-device. The gateway structure
integrates embedded devices to receive sensor values from the
end-device portion, forwards these values to the cloud
component to update the database, and refreshes the web
application. This part also performs the most important task -

computation of sampling frequency values from UDASA,
which is determined after each data point is obtained to ensure
the algorithm is computed with the continuous change of
values from the setting. The sampling frequency is continually
suggested, and the result is returned to the end-device.

End-device: The end-device is made up of sensors that
collect and send values to the gateway, and devices that attach
to the gateway in a star pattern. The primary function of this
component is to acquire constantly changing sampling
frequencies from the gateway component in order to change
the device's sampling frequency, well with the ultimate goal
of saving energy.

B. System implementation

This section describes the proposed system's use of
modern technologies:

Cloud data center: In consideration of the web
application, we use a Laravel framework-based backend
server. The database is built with MySQL, as recommended
by Laravel, and React.js, a JavaScript library for creating user
interfaces. MQTT, an ideal communication channel for IoTs
applications, will be deployed in this component to
communicate between the cloud data center and the gateway.
For ease of deployment, all will be deployed on the Docker
Container.

Gateway: We use a device with the processor: Intel (R)
Core (TM) i5-6200U CPU @ 2.30 GHz, 2401 MHz, 8 GB of
RAM attached to Waspmote Gateway 802.15.4 PRO to
receive data from the device through the Zigbee protocol.

End-device: Waspmote is a libelium advanced chip used
in this component to add sensors by combining additional
circuit boards (Smart Cities PRO, Smart Agriculture) (BME,
lux). To communicate with the gateway, it uses the Xbee
802.15.4 module.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the results obtained

through our experiments and data from our system. Part A re-

implements UDASA on NOAA datasets to apply it to our

specific scenarios. The next one, Part B performs UDASA on

our Smart Cities - UiTiOt datasets to further evaluate the

obtained parameters of the algorithm. In Part C, we

implement UDASA just done above on our system and tested

for a sensor. Finally, like Part C, but Part D will test collect a

variety of sensors. Both two scenarios are adjusted for

different savings levels on our system.

A. Re-implement UDASA on NOAA datasets

“National Oceanic and Atmospheric Administration

(NOAA)” provides a set of real-time data about water quality

in a place called “Jamstown”. Data is maintained from 2008

to present, interval sampling is 1 hour. We extracted the DO

and turbidity values from December 15, 2016 to March 15,

2017.

From [2]’s pseudo-code, we used the python language to

re-implement UDASA. By different methods, we evaluated

to know what is the correct UDASA on the NOAA dataset

from the suggestion of [2]. Our best results are shown in

Table III.

The energy-saving value is changed at 1, 3, 5, 10, 15, 20,

with 1 indicating no savings and this being the initial dataset.

The window size is set to 30.

Fig. 5. The high-level design of the proposed system model

B. Applying UDASA on Smart Cities - UiTiOt datasets

We continue to use UDASA in section A on the Smart

Cities - UiTiOt dataset to assess the potential for balancing

saving data points obtained while maintaining the datasets'

accuracy.

Smart Cities - UiTiOt provides a set of real-time data

about different environmental data on the 12th floor of

Building E, University of Information Technology - VNU-

HCM. The dataset was deployed from July 2020 to the

present, with interval sampling every 15 minutes. We will

extract the typical values as lux, temperature, humidity,

pressure from March 1 to April 23, 2021. The reason for this

implementation is that these values would fluctuate

significantly during the peak dry season in Ho Chi Minh City.

The energy-saving levels are set to 1, 3, 5, 10, 15, 20, and

window size is 30, with a Tbase of 15 minutes applied to the 4

data sets mentioned above. Figure 6 shows that the data

precision is maintained.

Changes in the energy-saving level n significantly

decreased the number of data points. E.g., at temperature, n

is 3, the number of data points to collect is just around 44%

of the original data (from 5116 data points to 2272 data

points). The NME value is 1.35%, implying that the dataset

after using the UDASA is only 1.35% different from the

original dataset and has an accuracy of 98.65%. As the n

value is increased to 5, the number of data points decreases

by approximately 4.3 times, and the precision is marginally

reduced to 98.11%. Similarly, as n is increased in steps until

it reaches 20, the accuracy drops to 95.12%.

The sensor values for lux, humidity, and pressure were

similar, particularly pressure value when n = 3, NME value

reached 0.43%, equivalent to 99.57% accuracy. Figure 6

depicts the trend of the datasets, where the data at lux

fluctuates significantly (from more than 20,000 to 0), so the

NME value of lux is higher than the other values when we

surveyed (14.56% with n = 20). See Table V for more

information.

C. UDASA is deployed on the system in case to collect a

sensor value

We continue to use UDASA on our systems with devices

from the libelium suite to measure the device's actual power

consumption. In this case, we use waspmote to collect the lux

values. Two waspmotes were gathered at the same time and

location; one waspmote will be collected normally, while the

other will be deployed on UDASA. Our system will

alternately set the value of energy-saving level n to 1, 3, 5,

and 10. The initial dataset for the algorithm is from the Smart

TABLE III. OUR IMPLEMENTATION RESULTS OF UDASA ON NOAA

DATASETS

Datasets Metrics
Saving Levels

1 3 5 10 15 20

D
O

Number
of

Samples

2090 1001 588 263 173 134

SF 1 0.48 0.28 0.13 0.08 0.06

NME 0 1.73 2.52 4.85 5.54 5.77

T
u

rb
in

ity

Number

of
Samples

2070 978 552 238 167 133

SF 1 0.47 0.27 0.11 0.08 0.06

NME 0 2.46 3.56 6.76 6.92 6.93

TABLE IV. OUR IMPLEMENTATION RESULTS OF UDASA ON SMART

CITIES - UITIOT DATASETS

D
a

ta
sets

Metrics

Saving Levels

1 3 5 10 15 20

L
u
x

Number

of

Samples

5184 2571 1648 740 422 297

SF 1 0.5 0.32 0.14 0.08 0.06

NME 0 3.93 4.7 7.47 11.43 14.56

T
em

p
eratu

re

Number
of

Samples

5116 2272 1179 539 370 285

SF 1 0.44 0.23 0.11 0.07 0.06

NME 0 1.35 1.89 2.91 3.93 4.88

H
u

m
id

ity

Number

of

Samples

5116 2200 1126 540 370 285

SF 1 0.43 0.22 0.11 0.07 0.06

NME 0 1.2 1.8 3.02 4.18 5.44

P
ressu

re

Number

of

Samples

5116 2360 1278 542 370 285

SF 1 0.46 0.25 0.11 0.07 0.06

NME 0 0.43 0.62 1.08 1.7 2.57

Fig. 6. The similarity among data trends with different saving levels on lux,

temperature, humidity, pressure datasets

TABLE V. LUX DATASET WITH DIFFERENT SAVING LEVELS

Datasets Metrics
Saving Levels

1 3 5 10

Lux

Number
of

Samples

384 175 116 64

SF 1 0.56 0.35 0.1

NME 0 3.83 13.9 28.11

Decline

of pin
0 5 6 6

Cities - UiTiOt datasets, November 1, 2020, from 0:00 to

8:30.

Our web application collects and displays all scenariors’s

results (see Figure 7). Table V displays the reports from each

case over the course of 4 days (total of 12 days). For savings

levels of 3, 5, and 10, the NME values are 3.83%, 13.9%, and

28.11%, respectively. Specifically, the highest battery saving

that the device will view is 6% over 4 days.

D. UDASA is deployed on the system in case to collect

many sensor values

In fact, the waspmote collects not just one sensor value

but many. We conducted to collect three values of

temperature, humidity, and pressure simultaneously. After

each collection, we will select the lowest sampling frequency

value to adjust the sampling frequency on the waspmote.

Since the Tbase value of the UDASA output is the lowest, the

accuracy of the three datasets is still assured after using

UDASA.

Table VI show that n = 3, the minimum NME rate of

temperature was 5.66% (accuracy is 94.34%), and it only

needed to collect 56% of the initial amount of data. When n

= 10, the sum of data collected is only 10%, but NME is

15.44% (accuracy is 84.56%). The precision was severely

reduced. Same for humidity and pressure values. In general,

the error rate is higher than Part C due to the need to balance

the 3 sensor values when calculating the sampling frequency.

Since the system requires more power for the sensors

component, the maximum energy savings achieved by the

display device over 4 days is 9%.

V. CONCLUSIONS

In this work, we applied the UDASA [2] into the

environmental monitoring station namely Smart Cities –

UiTiOt system. UDASA is the User-Driven Adaptive

Sampling Algorithm that estimates in realtime the optimal

sampling frequency for IoT devices based on the changes of

data in history. This algorithm strikes a balance between the

size of the data collected and the corresponding energy

savings. From the pseudo-code of UDASA, we re-implement

this algorithm by python programming language, and apply

it into our system. We implement several scenarios with

different types of sensors. In the only one Lux sensor case,

the system only collected 64 data points when if without

UDASA, the system must collect 384 data points. And the

energy-saving at this scenario is 6% corresponding to n = 10.

In the scenario which uses 3 sensors Humidity, Temperature,

and Pressure, our best result is 9% energy-saving when n =

10, and the sum of data collected is only 10% compared to

fixed time sampling.

VI. REFERENCES

[1] "Internet of Things (IoT) connected devices installed base worldwide
from 2015 to 2025," [Online]. Available:

https://www.statista.com/statistics/471264/iot-number-of-connected-

devices-worldwide/. [Accessed 25 April 2021].

[2] L. Kim-Hung and Q. Le-Trung, "User-Driven Adaptive Sampling for

Massive Internet of Things," IEEE Access, vol. 8, pp. 135798-135810,

2020.

[3] D. Giouroukis, A. Dadiani, J. Traub, S. Zeuch and V. Markl, "A survey

of adaptive sampling and filtering algorithms for the internet of things,"

Proceedings of the 14th ACM International Conference on Distributed
and Event-based Systems, p. 27–38, July 2020.

[4] D. Trihinas, G. Pallis and M. D. Dikaiakos, "Low-cost adaptive

monitoring techniques for the Internet of Things," IEEE Transactions
on Services Computing, vol. 14, pp. 487-501, 2021.

[5] B. Srbinovski, M. Magno, F. Edwards-Murphy, V. Pakrashi and E.

Popovici, "An energy aware adaptive sampling algorithm for energy
harvesting wsn with energy hungry sensors," Sensors, vol. 16, p. 448,

2016.

[6] C. Alippi, G. Anastasi, C. Galperti, F. Mancini and M. Roveri,
"Adaptive sampling for energy conservation in wireless sensor

networks for snow monitoring applications," MASS, pp. 1-6, 2007.

[7] T. Hafeez, G. McArdle and L. Xu, "Adaptive window based sampling
on the edge for Internet of Things data streams," in 11th International

Conference on Network of the Future (NoF), 2020, pp. 105-109.

Fig. 7. Data trends are shown on our system

TABLE VI. TEMPERATURE, HUMIDITY, PRESSURE DATASETS WITH

DIFFERENT SAVING LEVELS

Datasets

Metrics
Saving Levels

1 3 5 10

Number

of

Samples

385 217 136 40

SF 1 0.56 0.35 0.1

Temperature

NME 0

5.66 7.91 15.44

Humidity 7.84 10.47 15.34

Pressure 2.07 7.66 16.89

Decline

of pin
0 7 6 9

