
A Power-efficient Implementation of SHA-256
Hash Function for Embedded Applications

Binh Kieu-Do-Nguyen1,2, Trong-Thuc Hoang2, Cong-Kha Pham2, Cuong Pham-Quoc1,3
1Ho Chi Minh City University of Technology (HCMUT), Vietnam

2The University of Electro-Communication, Tokyo, Japan
3Vietnam National University - Ho Chi Minh City, Vietnam

Email: {binh,thuc}@vlsilab.ee.uec.ac.jp; phamck@uec.ac.jp; cuongpham@hcmut.edu.vn

Abstract—SHA-256 is a well-known algorithm widely used in
many security applications. The algorithm provides a sufficient
level of safety and can be performed efficiently by FPGA devices
due to its high parallelism level. This paper presents a high-
throughput, low hardware resources usage, and power-efficiency
architecture of the SHA-256 algorithm targeting FPGA-based
embedded platforms. The SHA-256 computing core takes ad-
vantage of the specific architecture of FPGA to achieve high
performance. We implement the SHA-256 computing core with
hardware description languages so that the computing core
is technology-independent. Therefore, the computing core is
suitable for building applications with various FPGA-based plat-
forms. We conduct several experiments with both simulation and
SoC boards. The experimental results show that the core achieves
the same functionality, performance, and power consumption
when implemented on different FPGA families. The implemented
system with our SHA-256 computing core can function at 139.04
MHz, achieving a bandwidth of up to 1.04 Gbps. The SHA-256
computing core is power-efficient when consuming only 0.072 W
with the minimum configuration.

I. INTRODUCTION

Nowadays, hash functions play an essential role in many
cryptography algorithms [1], such as the Digital Signature
Standard (DSS) [2], Transport Layer Security (TLS) [3],
Internet Protocol Security (IPSec) [4], etc. With embedded
applications such as (Wireless Sensor Network [5], Trusted
Mobile Platform [6], etc.), they help the communication
among different parts of the system become more confident
and reliable. As an instance of well-known hash functions,
Secure Hash Algorithm (SHA) is a Secure Hash Standard [7]
defined by the National Institute of Standard and Technology
(NIST). Among the SHA-2 standards, SHA-256 is the most
common and suitable for embedded applications. The result
of the SHA-256 function is a 256-bits digest. The digest
and the original message are then transferred from a source
to a destination. Both are checked at the destination side
to validate the original message. The SHA-256 algorithm
offers an excellent opportunity to be accelerated by FPGA-
based devices due to a combination of great numbers of
basic logic operations, such as addition, rotation, and shift.
Consequently, FPGA devices can perform them in parallel to
improve performance.

This paper targets an SHA-256 computing core architecture
and implementation to deploy on FPGA platforms. Our pro-

?Corresponding authors: Cuong Pham-Quoc & Binh Kieu-Do-Nguyen

posed architecture is technology-independent so that the com-
puting core can function well in both Intel Altera- and Xilinx-
based platforms with high-throughput, power-efficiency, and
low hardware resource usage. To reach the goal, we apply
many optimization techniques in the hardware description as
follows.

1) Use a shift register and one-hot encoding to reduce the
resource usage and power consumption of the Finite State
Machine;

2) Use 3-input Carry Save Adders (CSAs) Adders to reduce
the combinational logic delay of the adders circuits;

3) Apply the pipeline architecture for computing stages of
the SHA-256 process;

4) Design the hardware to support the pipeline processing
of the two consecutive input messages;

5) Promote the parallelism of the system to perform opera-
tions with a high parallel level;

6) Keep unused registers stable during the calculation pro-
cess to reduce the dynamic power of the system.

Input and output signals of our proposed SHA-256 com-
puting core prefer the data streaming form due to a limited
number of control signals offered. In addition, the computing
core is compatible with both the AXI bus of Xilinx FPGA
chips or the Avalon bus of Intel Altera FPGA chips. The design
is optimized and implemented without using any vendor-based
IP cores. Therefore, it can be synthesized for various FPGA
platforms without any modification.

Along with conducting several experiments to demonstrate
the correctness and soundness of the proposed computing core,
we also evaluate the power consumption and bandwidth. The
SHA-256 computing core can work with multiple frequencies
to reveal the trade-off between power usage and performance.
The computing core achieves a speed-up of 14.45× when
compared with an ARM-based General Purpose Processor and
1.26× when compared with a high-performance x86 CPU.

The rest of the paper is organized as follows. Section II
presents the background of the SHA-256 algorithm and the
previous work on the topic in the literature. Section III reveals
the optimized architecture of our SHA-256 computing core.
We evaluate the proposed computing core under different
aspects, including working frequency, bandwidth, resource uti-
lization, power consumption, and performance in Section IV.



We also compare our design with other proposals in this
section. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first present the background of the SHA-
256 algorithm. Based on the algorithm, we design the FPGA-
based computing core. We also introduce a literature review
on the research topic in this section.

A. The SHA-256 algorithm

SHA-256 is the most well-known hash function of the SHA-
2 family. The SHA-256 algorithm satisfies all features of
the FIPS PUB 180-4 standard. The produced hash code is
unique for an original message, i.e., there does not exist any
mathematic model to find the original data from the generated
hash value. There do not exist two different messages that
produce the same hash code. Any change in the original
message leads to a significant update in the hash code.

The SHA-2 family includes four members. Those are SHA-
224, SHA-256, SHA-384, and SHA-512. They are classified
according to the length of the input messages, the number of
rounds for the compression step, the initialization vectors, and
the size of the final digest (also known as hash code). The
SHA-256 algorithm accepts original messages with lengths
of up to 264 bits to produce the last 256-bit digest. Before
hashing, an original message needs to be split into multiple
512-bit chunks. When the length of the message is not a
multiple of 512 bits, the final chunk is padded. In the SHA-256
hash function, each chunk is processed within 64 rounds. Each
round is a composition of various logical functions operating
on 32-bit input values. Six essential logical functions are
described in Equations 1-6 as follows.

Σ0(x) = rotr2(x)⊕ rotr13(x)⊕ rotr22(x) (1)

Σ1(x) = rotr6(x)⊕ rotr11(x)⊕ rotr25(x) (2)

σ0(x) = rotr7(x)⊕ rotr18(x)⊕ shr3(x) (3)

σ1(x) = rotr17(x)⊕ rotr19(x)⊕ shr10(x) (4)
Ch(x, y, z) = (x&y)⊕ (x̄&z) (5)

Maj(x, y, z) = (x&y)⊕ (x&z)⊕ (y&z) (6)

where rotrn is the n-bit rotation right operator, shrn is the
n-bit shift right, and ⊕ is the bit-wise XOR operator.

Each 512-bits chunk is firstly extended to 64×32 bits values
in a so-called extension stage as depicted in Algorithm 1.
Consequently, the compression stage processes the extended
values. Algorithm 2 reveals the compression algorithm for the
second stage. In this algorithm, the initial step only computes
the first chunk of the input data set (line 3). The temporal
variables (a, b, c, d, e, f , g, and h) are initialized by the initial
digest value. Each of the following chunks is processed based
on the digest value of the previous chunk. The compression
step executes in 64 iterations (lines 8 - 18) to calculate the
current hash values (variables a to h). After every 64 rounds,
the 256-bit digest value is accumulated from the current hash

values. When the final chunk is processed, the algorithm
produces the final 256-bit digest value.

The SHA-256 hash function offers a great opportunity to
accelerate. To calculate each W [i] value, the extension stage
performs three additions, four rotations, two-shift operations,
and four XOR operations. Meanwhile, the compression stage
executes seven additions, six rotations, six shift operations,
six XOR operations, and four AND operations before pro-
ducing the final digest. While a general-purpose processor
(GPP) performs these operations sequentially, an FPGA-based
accelerator can process them in parallel.

Algorithm 1: The extension algorithm
Input: 32-bit messages M[0..15]
Result: W[0..63] // Extended array

1 Var: I
2 Initialize I ← 0
3 for I ← 0 to 15 by 1 do
4 W [I]←M [I];
5 I ← I + 1

6 for I ← 16 to 63 by 1 do
7 W [I]←W [I − 16] + σ0(W [I − 15])
8 +W [I − 7] + σ0(W [I − 2]);
9 I ← I + 1

Algorithm 2: The compression algorithm
Input: W[0..63] K[0..63]
Result: digest; // 256-bit hash code

1 Var: I , T1, T2, a, b, c, d, e, f , g, h
2 if It is the first chunk then
3 Initialize digest;

4 Initialize hash values a, b, c, d, e, f , g, h;
5 for I ← 0 to 63 by 1 do
6 T1← h+ Σ1(e) + Ch(e, f) +K[I] +W [I];
7 T2← Σ0(a) +Maj(a, b, c);
8 h← g;
9 g ← f ;

10 f ← e;
11 e← d+ T1;
12 d← c;
13 c← b;
14 b← a;
15 a← T1 + T2;

16 digest[31..0] ← digest[31..0] + a;
17 digest[63..32] ← digest[63..32] + b;
18 digest[95..64] ← digest[95..64] + c;
19 digest[127..96] ← digest[127..96] + d;
20 digest[159..128] ← digest[159..128] + e;
21 digest[191..160] ← digest[191..160] + f ;
22 digest[223..192] ← digest[223..192] + g;
23 digest[255..224] ← digest[255..224] + h;



B. Related work

After published in 2002, many FPGA-based implemen-
tations for SHA have been proposed in the literature. The
authors of papers in [8], [9], [10], [11] proposed a solution
of using Carry-Save Adder to minimize the delay caused by
the additions chain of the SHA-256 algorithm. The designs
in [11] and [12] used an unrolled architecture to reduce
the number of cycles needed to calculate all rounds of the
algorithms. This unrolled method can reduce up to half of
the total cycles. However, it required a complex controller
and dramatically increased the amount of hardware resource
usage and the computing core power consumption. Research
presented in [13] used Block RAM (BRAM) to store constant
values needed for the compression stage. The authors in [1]
combined the advantage of the above papers and applied
the pipeline architecture to achieve higher performance. This
paper also suggested the use of a counter to implement the
controller for an SHA-256 system. The design in [14] and its
improvement in [15] offered a very high throughput. However,
they required so many hardware resources that they could not
deploy FPGA families for embedded applications.

The most relevant result to our work was proposed in [16].
In this paper, the authors provided a shallow power con-
sumption design to deploy on Mobile Platforms. They applied
most techniques of the previous work and tried to reduce
the number of computational logic elements by using mul-
tiple data selectors. This design resues some modules several
times. Although the proposal reduced the design’s power
consumption, data selectors and their control signals used more
hardware resources. Finally, the system consumed more power.
Besides, it also increased the combinational logic delay of each
pipeline stage and reduced parallelism. The design offered a
low bandwidth. Thus, it was not suitable for all embedded
applications.

III. OPTIMIZED ARCHITECTURE

In this section, we propose the optimized architecture for the
FPGA-based SHA-256 computing core. At first, we present the
generic architecture of the computing core. We then explain in
detail the functionalities and structures of each module inside.

A. SHA-256 Core

The SHA-256 computing core is designed according to
the Datapath-Controller model. The proposed FPGA-based
computing core consists of four main modules as follows.

• The Controller module receives control signals from
outside through the Communication module and statuses
of both the Extension and Compression modules to
generate the appropriate control signals. The Controller
module maintains the soundness and correctness of the
other modules.

• The Communication module receives original messages
and control signals for processing of the computing core.
The module also sends the 256-bit digest results out when
the hash process completes. The Communication module

is designed to target the streaming data communication
form.

• The Extension module performs the expansion stage. The
module then forwards W data generated after the exten-
sion stage to the Compression module for processing in
the compression stage.

• The Compression module compresses the W data gen-
erated by the Extension to produce the digest. After
64 iterations of the compression process completed, the
Communication module sends out the final digest. Other
units of the system further process the final result of the
SHA-256 module.

Controller

Data bus Control signals

digests

messages

SHA-256 computing core

C
o
m
m
u
n
ic
ati

o
n Extension

CompressionCompression

In
te

rc
o

n
n

ec
t 

in
fr

as
tr

u
ct

u
re

Host processor

Fig. 1. The overview architecture of the proposed FPGA-based SHA-256
computing core

Figure 1 illustrates the architecture of the FPGA-based
SHA-256 computing core. The pipeline model is also preferred
in the design. Two levels of the pipeline are applied as follows.

• The pipeline of computation stages: the hashing process
consists of four steps. The SHA-256 computing core
needs 16 cycles during the first stage to fetch a 512-bit
chunk from an interconnect infrastructure (e.g., a bus,
shared memory, etc.) via the communication module.
The Extension module takes one cycle to extend data
input from 512 bits to 64 × 32 bits during the second
stage. After that, the Compression module compresses
the output of the Extension module in one cycle. The
Extension and Compression modules have to execute in
64 rounds for one chunk. Therefore, the pipeline model
can be applied to the execution of the Extension and
Compression modules. In total, the two modules take 64
cycles to complete hashing a chunk. When the final digest
is produced, the computing core takes 8 cycles to push the
digest out to the interconnect infrastructure. Therefore,
the computing core needs 88 cycles to complete the entire
hash process of a chunk.

• The pipeline of chunks: along with the pipeline of
computation stages, our design offers a pipeline of the
input chunks. In this model, hashing of the next piece
does not need to wait for the finish of the previous one. It
can starts when the previous hashing has been processed
for 65 cycles.



B. Controller module

The Controller module maintains the soundness and correct-
ness of the SHA-256 computing core. It receives input signals
from the backbone bus and feedback from the other modules
to determine the computing core’s consequent operations.
A Finite State Machine (FSM) is used to implement the
Controller. There are 80 states in total. In other studies in
the literature, authors prefer a counter to implement a similar
FSM for the Controller module. Using a counter allows the
design to reduce the number of registers, but it requires more
combinational logic elements for the adder and decoder, as
depicted in Figure 2.

Controller

Data bus

W[0] ... W[9] ... W[14]

a c d

e

b

f g h

Ch K
W

A

E

A

E

digest
[255..0]

init 
data

+

fininit

Counter mod nCounter mod n

+

DecoderDecoderx

control signal

0

...

1
2

x

...

n-1

control signal

SHA-256 computing core

clk, reset, enable

oReady
iValid
iData
iStartOfPacket
iEndOfPacket

iReady
oValid
oData

Sink Source

shift start

W

0 1 3 15 16

...

oReady
(from Core)

iValid
(from source)

clk

0 1 3 15 16

...

oValid
(from Core)

iReady
(from sink)

clk

(a)

(b)

iData
(from source) xxx xxxD0 D1 D15D2..D14

oData
(from Core) xxx xxxD0 D1 D15D2..D14

SHA-256
computing

core

Monitor

Data
generator

Performance counter

USB Blaster

Start

I

W[1] W[15]

Control signals

digests

messages

SHA-256 computing core

C
o

m
m

u
n

ic
ati

o
n Extension

CompressionCompression

Fi
n

is
h

FPGA platform

Computer

Sink
devices

Source
devices

+ σ1σ0

CSA

Σ0

σ0

Σ1

Maj CSA

CSA +

CSA

a..h

Fig. 2. Comparison of the counter and and our shift register method

Additionally, input data usually change at a high frequency
during the counting process. Our design encodes the 80 states
of the hash process by the one-hot method and uses shift reg-
isters to perform stage transitions for the FSM. Our approach
offers two main benefits compared to the counter method:
(i) Our approach does not need to implement combinational
circuits to calculate the next state for state transition and
decode the current state. Therefore, we can reduce hardware
resource usage and total power consumption. (ii) One-hot code
allows values of each bit in the shift register to change only
twice during 80 cycles. Therefore, we can reduce the dynamic
power of the design. Figure 2 compares the counter method
and our shift register method.

C. Extension module

The Extension module expands 16 × 32-bit input chunks to
64 × 32 bits W values. Algorithm 1 shows that the extension
stage needs a 64 × 32-bit buffer to store all values of W .
However, only values of W [I − 16], W [I − 15], W [I − 7],
and W [I − 2] are required to calculate the value of W [I].
In other words, the buffer only needs to keep 16 previous
values. Therefore, our design uses 16 × 32-bit shift registers
to store required data to calculate values of W in one particular
round. When processing new data, it is pushed toward the tail
of the shift chain. At the same time, the data element stored
at the head of the shift register is released and forwarded to
the Compression unit. In our design, Carry Save Adder (CSA)
performs three-operand additions. CSA is the most effective
adder for the addition of 3 or more operands to implement a
fast computation of arithmetic of register-transfer level (RTL)

design [17] [18]. Figure 3 illustrates the architecture of the
Extension module.

Controller

Data bus

W[0] ... W[9] ... W[14]

a c d

e

b

f g h

Ch K
W

A

E

A

E

digest
[255..0]

init 
data

+

fininit

Counter mod nCounter mod n

+

DecoderDecoderx

control signal

0

...

1
2

x

...

n-1

control signal

SHA-256 computing core

clk, reset, enable

oReady
iValid
iData
iStartOfPacket
iEndOfPacket

iReady
oValid
oData

Sink Source

shift start

W

0 1 3 15 16

...

oReady
(from Core)

iValid
(from source)

clk

0 1 3 15 16

...

oValid
(from Core)

iReady
(from sink)

clk

(a)

(b)

iData
(from source) xxx xxxD0 D1 D15D2..D14

oData
(from Core) xxx xxxD0 D1 D15D2..D14

SHA-256
computing

core

Monitor

Data
generator

Performance counter

USB Blaster

Start

I

W[1] W[15]

Control signals

digests

messages

SHA-256 computing core

C
o

m
m

u
n

ic
ati

o
n Extension

CompressionCompression

Fi
n

is
h

FPGA platform

Computer

Sink
devices

Source
devices

+ σ1σ0

CSA

Σ0

σ0

Σ1

Maj CSA

CSA +

CSA

a..h

Fig. 3. The micro-architecture of the Extension module

Algorithm 1 also reveals that there are 13 operations in
each round of the Extension stage. The Extension module can
execute them in parallel due to data independence. Therefore,
the FPGA-based SHA-256 computing core can introduce a
considerable speed-up when compared to GPPs.

D. Compression unit

The Compression module compresses 64 values of W
generated by the Extension module to produce a 256-bit
digest. Based on Algorithm 2, eight different 32-bit temporary
variables are used for the compression process. We name
them as a, b, c, d, e, f , g, and h. When the compression
process begins, the temporal variables are initialized by the
current value of the digest. After 64 rounds of compression,
they are added to the digest to produce the new value of
the hash code. Although there are eight variables, only the
a and e variables need to be re-calculated in each round.
Meanwhile, the variables b, c, d, f , g, and h receives values
from their previous neighbors. Therefore, in our design, two
shift registers are used to store the variables. The first one
stores values of a, b, c, and d while the second one keeps
values of e, f , g, and h. Figure 4 reveals the shift direction
of the two shift registers and the calculation process of the
Compression module. The input of the 256-bit digest register is
kept stable during the compression process. It is updated if and
only if the init data signal is active or the compression
process completes. Otherwise, it is disabled to reduce the
dynamic power consumption.

According to Algorithm 2, there are 23 operations in each
round of the Compression stage. Since the pipeline mechanism
is applied, at least 36 operations can be performed in parallel.

E. Communication agent

The Communication module provides an interface so that
the SHA-256 computing core receives input data and writes
output digest to the interconnect infrastructure. In our design,
the Communication module is designed and implemented to
support the data stream form. The stream interface and the on-
chip memory interface (buffers) are compatible for transferring
data. Our designed stream interface has the following features:
(i) requiring a minimum of input/output signals; (ii) following
the stream protocol to be compatible with both the Intel Avalon
bus [19] and Xilinx AXI bus [20]; and (iii) being compatible
with the existing IP Core of Intel and Altera. The stream
interface includes a sink interface to receive messages from



Controller

Data bus

W[0] ... W[9] ... W[14]

a c d

e

b

f g h

Ch K
W

A

E

A

E

digest
[255..0]

init 
data

+

fininit

Counter mod nCounter mod n

+

DecoderDecoderx

control signal

0

...

1
2

x

...

n-1

control signal

SHA-256 computing core

clk, reset, enable

oReady
iValid
iData
iStartOfPacket
iEndOfPacket

iReady
oValid
oData

Sink Source

shift start

W

0 1 3 15 16

...

oReady
(from Core)

iValid
(from source)

clk

0 1 3 15 16

...

oValid
(from Core)

iReady
(from sink)

clk

(a)

(b)

iData
(from source) xxx xxxD0 D1 D15D2..D14

oData
(from Core) xxx xxxD0 D1 D15D2..D14

SHA-256
computing

core

Monitor

Data
generator

Performance counter

USB Blaster

Start

I

W[1] W[15]

Control signals

digests

messages

SHA-256 computing core

C
o

m
m

u
n

ic
ati

o
n Extension

CompressionCompression

Fi
n

is
h

FPGA platform

Computer

Sink
devices

Source
devices

+ σ1σ0

CSA

Σ0

σ0

Σ1

Maj CSA

CSA +

CSA

a..h

Fig. 4. The micro-architecture of the Compression module

source devices and a source interface to send the final digest
to sink devices. Figure 5 illustrates the input/output ports of the
FPGA-based SHA-256 computing core following the stream
protocol and how they connect with other stream devices.

Controller

Data bus

W[0] ... W[9] ... W[14]

a c d

e

b

f g h

Ch K
W

A

E

A

E

digest
[255..0]

init 
data

+

fininit

Counter mod nCounter mod n

+

DecoderDecoderx

control signal

0

...

1
2

x

...

n-1

control signal

SHA-256 computing core

clk, reset, enable

oReady
iValid
iData
iStartOfPacket
iEndOfPacket

iReady
oValid
oData

Sink Source

shift start

W

0 1 3 15 16

...

oReady
(from Core)

iValid
(from source)

clk

0 1 3 15 16

...

oValid
(from Core)

iReady
(from sink)

clk

(a)

(b)

iData
(from source) xxx xxxD0 D1 D15D2..D14

oData
(from Core) xxx xxxD0 D1 D15D2..D14

SHA-256
computing

core

Monitor

Data
generator

Performance counter

USB Blaster

Start

I

W[1] W[15]

Control signals

digests

messages

SHA-256 computing core

C
o

m
m

u
n

ic
ati

o
n Extension

CompressionCompression

Fi
n

is
h

FPGA platform

Computer

Sink
devices

Source
devices

+ σ1σ0

CSA

Σ0

σ0

Σ1

Maj CSA

CSA +

CSA

a..h

Fig. 5. The Communication interface for the SHA-256 computing core

The stream protocol requires that sink devices issue and
keep ready signals active to notice that they can receive data.
When source devices receive ready status from sink devices
and data are ready to send, the source devices issue and
keep valid signals active. Figure 6 reveals how our SHA-
256 computing core communicates with source and sink
devices. To start communication with a source, the computing
core activates the oReady signal. The source module then
acknowledges by the high level of the iValid signal (please
note that a source device only activates a valid status when a
connected sink device is ready before). After this handshaking,
data arrive at the computing core via the iData port with
the iValid signal active. When receiving all 16 valid data
segments, the computing core de-activates the oReady output
port to alert the connected source. The source device takes
one cycle to de-activate its valid signal. The oReady can
be asserted again after 65 clock cycles for computation of
the core. The same rules are used for communication with
a sink device to deliver a hash code to the sink. When the
iReady input is active (i.e., the sink is ready to receive

data), the computing core asserts the oValid signal along
with data segments at the oData port. When the bit-width of
the interconnect infrastructure is 32, it takes eight clock cycles
to transfer a 256-bit digest to the sink.

Fig. 6. Waveform of (a) communication with a source; and (b) communication
with a sink

IV. EXPERIMENTS

In this section, we present our experiments for testing
and validating the core. At first, we introduce our setup for
conducting experiments. We then discuss the experimental
results and comparisons with other studies in the literature.

A. Experimental setup

We perform the experiments in the SoCKit platform. SoCKit
is an FPGA development kit based on the Intel Altera
Cyclone V SoC FPGA. The experimental platform, widely
used for embedded applications, includes a Cyclone V SoC
5CSXFC6DF32 FPGA chip with 110K Programmable Logic
Elements and Dual-Core ARM Cortex-A9. The Cyclone V
family targets performance efficiency and low-cost embedded
systems. In our test scenarios, we execute the SHA-256
hash function with a 1000 MB input message. We collect
and compare the execution time between FPGA-based and
GPP-based implementation. The GPP is the ARM Cortex-A9
processor inside the FPGA SoC functioning at 925 MHz [21].

Meanwhile, the working frequency of our FPGA-based
core is 100 Mhz. We also execute the hash function on the
AMD Ryzen 7 4800H processor functioning at 4.2 GHz.
Nevertheless, we would like to emphasize that our computing
core targets embedded applications, which prefer less power
consumption and hardware resources usage instead of high



frequency or bandwidth. We also compare hardware resource
usage and the maximum frequency for the computing core
when synthesized with various FPGA families from Xilinx,
including Spartan, Artix, and Zynq. These families also target
efficient cost and power consumption.

Figure 7 depicts the experimental system used to measure
the performance of our computing core. The Data generator
module generates a 1000 MB message for the hash process.
The Performance counter starts when receiving the Start
signal and completes when receiving the Finish signal
from the SHA-256 computing core. The host computer reads
the performance records through USB Blaster [22] to report
measured values.

Controller

Data bus

W[0] ... W[9] ... W[14]

a c d

e

b

f g h

Ch K
W

A

E

A

E

digest
[255..0]

init 
data

+

fininit

Counter mod nCounter mod n

+

DecoderDecoderx

control signal

0

...

1
2

x

...

n-1

control signal

SHA-256 computing core

clk, reset, enable

oReady
iValid
iData
iStartOfPacket
iEndOfPacket

iReady
oValid
oData

Sink Source

shift start

W

0 1 3 15 16

...

oReady
(from Core)

iValid
(from source)

clk

0 1 3 15 16

...

oValid
(from Core)

iReady
(from sink)

clk

(a)

(b)

iData
(from source) xxx xxxD0 D1 D15D2..D14

oData
(from Core) xxx xxxD0 D1 D15D2..D14

SHA-256
computing

core

Monitor

Data
generator

Performance counter

USB Blaster

Start

I

W[1] W[15]

Control signals

digests

messages

SHA-256 computing core

C
o

m
m

u
n

ic
ati

o
n Extension

CompressionCompression

Fi
n

is
h

FPGA platform

Computer

Sink
devices

Source
devices

+ σ1σ0

CSA

Σ0

σ0

Σ1

Maj CSA

CSA +

CSA

a..h
Fig. 7. The experimental system

B. Experimental results

Table I presents the execution time and bandwidth of our
FPGA-based SHA256 computing core, the ARM Cortex-A9
processor, and the AMD processor when processing 1000
MB message hashing. The SHA-256 computing core archives
speed-ups by up to 14.45× and 1.26× when compared to
ARM Cortex-A9 and AMD Ryzen 7 4800H, respectively.
Please note that the working frequency of the FPGA-based
SHA-256 Core is about 11,11% of the ARM Processor work-
ing frequency and 2,38% of the AMD CPU frequency.

TABLE I
EXECUTION TIME, WORKING FREQUENCY, AND BANDWIDTH COMPARISON

Platform Frequency Execution Time Bandwidth
Our FPGA-based core 100 MHz 10.65s 751 Mbps

ARM 925 MHz 153.63s 52 Mbps
AMD CPU 4200 MHz 13.42s 596 Mbps

Table II shows the proposed FPGA-based SHA-256 com-
puting core synthesis results with various FPGA families from
Intel Altera and Xilinx vendors. The FPGA chips that we select
for our experiments are the most popular when deploying
embedded applications. They are Intel Cyclone V (5CSXFC6),
Xilinx Artix-7 (xc7a200t), Xilinx SoC Zynq-7000 (xc7z020),
Xilinx MPSoC Zynq Ultrascale+, Xilinx Spartan-7 (xc7s50).
The resource usage occupies 2% on Cyclone V, 0.97% on
Artix-7, 2.46% on Zynq-7000, 1.85% on Zynq Ultrascale+,
and 4% on Spartan-7. We manually develop and optimize
the core with Verilog-HDL without using any IP Core to
obtain the technology-independent computing core. Therefore,
our SHA-256 computing core can be easily synthesized and

built on FPGA devices from either Intel or Xilinx vendors
without any modification. Besides, the working frequency is
similar for different FPGA platforms. The maximum working
frequency is nearly 140 MHz on most platforms. Furthermore,
the maximum bandwidth is 1.04 Gbps, sufficient for all
communication protocols used in embedded applications.

TABLE II
HARDWARE RESOURCES USAGE FOR VARIOUS FPGA DEVICES

Device 5CSXFC6 xc7a200t xc7z020 zu3eg xc7s50
LUTs 878 1310 1310 1310 1310
Total 41910 134600 53200 70560 32600

Registers 1159 881 881 881 881
Slices N/A 327 327 327 327

FMax (MHz) 139.04 139.02 139.02 141.84 123.78

We also perform experiments to evaluate the power con-
sumption of our SHA-256 computing core. We use the
Spartan-7 FPGA chip from Xilinx for this evaluation, which
offers an impressive power optimization. Data are collected
when the core functions at 100 MHz, 50 MHz, 25 MHz, and 10
MHz. Figure 8 shows that the Spartan-7 family consumes less
power than Artix-7 with the same frequency. With the Spartan-
7, the static power consumption is almost stable at ∼68 mW
with different frequencies. The dynamic power consumption,
meanwhile, reduces accordingly to working frequency. It sig-
nificantly decreases with frequencies lower than 50 MHz when
consuming only 4 mW at 10 MHz. In almost all scenarios, the
power for clock signal occupies 50% of the dynamic power
consumption, while the proportion of signals power and logic
power is 25% each.

74

72

18

9

4

122

69

68

68

68

100 MHZ 
(ARTIX)

100 MHZ 
(SPARTAN)

50 MHZ 
(SPARTAN)

25 MHZ 
(SPARTAN)

10 MHZ 
(SPARTAN)

POWER CONSUMPTION
Dynamic Power (mW) Static Power (mW)

0

1000

2000

3000

4000

5000

6000

0

100

200

300

400

500

600

700

800

100 MHz 50 MHz 25 MHz 10 MHz
Frequency

Bandwidth Performance

Pe
rf
or
m
an

ce
 (M

b/
W
)

Ba
nd

w
id
th
 (M

bp
s)

Fig. 8. Power consumption

Figure 9 analyzes the relationship of bandwidth of the
computing core, working frequency, and power consumption.
In this picture, the performance is measured by Megabits per
Watt (Mb/W). The SHA-256 computing core achieves 5202.77
Mb/W at 100 MHz, 4579.65 Mb/W at 50 MHz, 2381.69 Mb/W
at 25 MHz, and 1094.03 Mb/W at 10 MHz. The chart shows
that the performance significantly decreases when executed
under 50 MHz. However, the bandwidth of the core working at
10 MHz (which is 78.77 Mbps) still satisfies the requirements
of almost all embedded applications.



74

72

18

9

4

122

69

68

68

68

100 MHZ 
(ARTIX)

100 MHZ 
(SPARTAN)

50 MHZ 
(SPARTAN)

25 MHZ 
(SPARTAN)

10 MHZ 
(SPARTAN)

POWER CONSUMPTION
Dynamic Power (mW) Static Power (mW)

0

1000

2000

3000

4000

5000

6000

0

100

200

300

400

500

600

700

800

100 MHz 50 MHz 25 MHz 10 MHz
Frequency

Bandwidth Performance

Pe
rf
or
m
an

ce
 (M

b/
W
)

Ba
nd

w
id
th
 (M

bp
s)

Fig. 9. Bandwidth and Performance

C. Comparison

Table III shows a comparison between our proposed design
and the previous work of the SHA-256 computing core design.
Our computing core needs a limited amount of hardware re-
source usage and provides a higher bandwidth when compared
with almost all proposals in the literature.

TABLE III
COMPARISON OF OUR SHA-256 COMPUTING CORE AND THE OTHERS

PROPOSED IN THE LITERATURE

Ref Platform Resources FMax Bandwidth
(slices) (Mhz) (Mbps)

This work

xc7a200t 327 139.02 1020
xc7z020 327 139.02 1020

zu3eg 327 141.84 1040
xc7s50 327 123.78 910

[16] xc2v2000 779 71.50 75
[23] xcv300E 1261 88.00 617
[24] xcv200 1060 83.00 326
[25] xcv300e 2008 42.90 56
[26] VirtexII-6 849 87.00 685
[1] xc2v200 1373 133.06 1009

[27] xc2v200 797 150.00 1184
[28] xcv200 1306 77.00 597
[29] xc2v2000 1938 81.00 1296
[30] v200pq240 2120 74.00 582

V. CONCLUSION

This paper presents a compact design of the SHA-256
hash function on an FPGA-based device. The proposed ar-
chitecture achieves multiple targets: high-throughput, limited
resource utilization, optimized and technology-independent,
and minimal power consumption. The presented architecture
can work at 141.84 Mhz, offers a bandwidth of 1.04 Gbps,
and consume only 0.072 W with minimal configuration. The
paper also shows a detailed evaluation of the provided SHA-
256 computing core on different aspects. It can be helpful to
select the appropriate configuration for specific applications.
In summary, the SHA-256 implementation in this paper can
adapt to a wide range of embedded applications, from low-
power to high-performance requirements.

REFERENCES

[1] R. McEvoy, F. Crowe, C. Murphy, and W. Marnane, “Optimisation of
the sha-2 family of hash functions on fpgas,” in IEEE Computer Society
Annual Symposium on Emerging VLSI Technologies and Architectures
(ISVLSI’06), 2006, pp. 6 pp.–.

[2] “Digital signature standard (dss),” NIST, Tech. Rep. FIPS PUB 186-3,
Nov. 2008.

[3] T. Dierks and E. Rescorla, “The transport layer security (dss) protocol,”
IETF Network Working Group, Tech. Rep. RFC 5246, Aug. 2008.

[4] S. Kent, “Security architecture for the internet protocol,” IETF Network
Working Group, Tech. Rep. RFC 4301, Dec. 2005.

[5] H. Nunoo-mensah, K. O. Boateng, and J. D. Gadze, “Article: Compar-
ative analysis of energy usage of hash functions in secured wireless
sensor networks,” International Journal of Computer Applications, vol.
109, no. 11, pp. 20–23, January 2015.

[6] M. Kim, D. G. Lee, and J. Ryou, “Compact and unified hardware
architecture for sha-1 and sha-256 of trusted mobile computing,”
Personal and Ubiquitous Computing, vol. 17, no. 5, pp. 921–932, Jun
2013. [Online]. Available: https://doi.org/10.1007/s00779-012-0543-0

[7] “Secure hash standard (shs),” NIST, Tech. Rep. FIPS PUB 180-2, 2008.
[8] L. Dadda, M. Macchetti, and J. Owen, “An asic design for a high speed

implementation of the hash function sha-256 (384, 512),” in Proceedings
of the 14th ACM Great Lakes Symposium on VLSI, ser. GLSVLSI ’04.
New York, NY, USA: Association for Computing Machinery, 2004, p.
421–425. [Online]. Available: https://doi.org/10.1145/988952.989053

[9] ——, “The design of a high speed asic unit for the hash function sha-
256 (384, 512),” in Proceedings Design, Automation and Test in Europe
Conference and Exhibition, vol. 3, 2004, pp. 70–75 Vol.3.

[10] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr,
T. Lehman, and B. Schott, “Comparative analysis of the hardware
implementations of hash functions sha-1 and sha-512,” in Proceedings
of the 5th International Conference on Information Security, ser. ISC
’02. Berlin, Heidelberg: Springer-Verlag, 2002, p. 75–89.

[11] R. Lien, T. Grembowski, and K. Gaj, “A 1 gbit/s partially unrolled ar-
chitecture of hash functions sha-1 and sha-512,” in Topics in Cryptology
– CT-RSA 2004, T. Okamoto, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 324–338.

[12] F. Crowe, A. Daly, T. Kerins, and W. Marnane, “Single-chip fpga
implementation of a cryptographic co-processor,” in Proceedings. 2004
IEEE International Conference on Field- Programmable Technology
(IEEE Cat. No.04EX921), 2004, pp. 279–285.

[13] M. McLoone and J. McCanny, “Efficient single-chip implementation
of sha-384 and sha-512,” in 2002 IEEE International Conference on
Field-Programmable Technology, 2002. (FPT). Proceedings., 2002, pp.
311–314.

[14] H. E. Michail, G. Athanasiou, V. I. Kelefouras, G. Theodoridis,
T. Stouraitis, and C. E. Goutis, “Area-throughput trade-offs for SHA-1
and SHA-256 hash functions’ pipelined designs,” J. Circuits Syst.
Comput., vol. 25, no. 4, pp. 1 650 032:1–1 650 032:26, 2016. [Online].
Available: https://doi.org/10.1142/S0218126616500328

[15] H. E. Michail, G. Athanasiou, V. I. Kelefouras, G. Theodoridis,
and C. E. Goutis, “On the exploitation of a high-throughput
SHA-256 FPGA design for HMAC,” ACM Trans. Reconfigurable
Technol. Syst., vol. 5, no. 1, pp. 2:1–2:28, 2012. [Online]. Available:
https://doi.org/10.1145/2133352.2133354

[16] M. Kim, J. Ryou, and S. Jun, “Efficient hardware architecture of sha-
256 algorithm for trusted mobile computing,” in Information Security
and Cryptology, M. Yung, P. Liu, and D. Lin, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 240–252.

[17] T. Kim, W. Jao, and S. Tjiang, “Arithmetic optimization using carry-
save-adders,” in Proceedings 1998 Design and Automation Conference.
35th DAC. (Cat. No.98CH36175), 1998, pp. 433–438.

[18] M. Zeghid, B. Bouallegue, M. Machhout, and R. Tourki, “Architectural
design features of a programmable high throughput reconfigurable sha-2
processor,” 2008.

[19] “Avalon interface specification,” Intel, Tech. Rep. MNL-AVABUSREF,
May 2021.

[20] “Axi reference guide,” Xilinx, Inc., Tech. Rep. UG-1037, Jul. 2017.
[21] “Cyclone v device datasheett,” Intel, Tech. Rep. CV-51002, Nov. 2019.
[22] “Intel quartus prime standard edition user guide: Debug tools,” Intel,

Tech. Rep. UG-20182, Sep. 2018.



[23] K. K. Ting, S. C. L. Yuen, K. H. Lee, and P. H. W. Leong, “An fpga based
sha-256 processor,” in Field-Programmable Logic and Applications:
Reconfigurable Computing Is Going Mainstream, M. Glesner, P. Zipf,
and M. Renovell, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 577–585.

[24] N. Sklavos and O. Koufopavlou, “On the hardware implementations of
the sha-2 (256, 384, 512) hash functions,” in Proceedings of the 2003
International Symposium on Circuits and Systems, 2003. ISCAS ’03.,
vol. 5, 2003, pp. V–V.

[25] S. Dominikus, “A hardware implementation of md4-family hash algo-
rithms,” in 9th International Conference on Electronics, Circuits and
Systems, vol. 3, 2002, pp. 1143–1146 vol.3.

[26] Helion ip core products, helion technology. [Online]. Available:
http://www.heliontech.com/core.htm

[27] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis, “Improving sha-2

hardware implementations,” in Cryptographic Hardware and Embedded
Systems - CHES 2006, L. Goubin and M. Matsui, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 298–310.

[28] R. Glabb, L. Imbert, G. Jullien, A. Tisserand, and N. Veyrat-
Charvillon, “Multi-mode operator for sha-2 hash functions,”
Journal of Systems Architecture, vol. 53, no. 2, pp. 127–138,
2007, embedded Hardware for Cryptosystems. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1383762106001093

[29] M. Zeghida, B. Bouallegue, A. Baganne, M. Machhout, and R. Tourki,
“A reconfigurable implementation of the new secure hash algorithm,”
in The Second International Conference on Availability, Reliability and
Security (ARES’07), 2007, pp. 281–285.

[30] N. Sklavos and O. Koufopavlou, “Implementation of the sha-2 hash
family standard using fpgas,” The Journal of Supercomputing, vol. 31,
pp. 227–248, 2005.


