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Abstract—There are many kinds of cassava leaf diseases firmly
harm cassava yield, including four main types as followings:
Cassava Bacterial Blight (CBB), Cassava Brown Streak Disease
(CBSD), Cassava Green Mottle (CGM), and Cassava Mosaic
Disease (CMD). In a traditional way, leaf diseases were diagnosed
intuitively by farmers. This process is inefficient and unreliable.
Several studies have recently relied on deep neural networks
for identifying leaf diseases. In this research, we exploit the
novel model named Vision Transformer (ViT) in place of a
convolution neural network (CNN) for classifying cassava leaf
diseases. Experimental results show that this model can obtain
competitive accuracy at least 1% higher than popular CNN mod-
els (EfficientNet, Resnet50d) on Cassava Leaf Disease Dataset.
These results also indicate the potential superiority of the ViT
over established methods in analyzing leaf diseases. Next, we
quantize the original model and successfully deploy it onto the
Edge device named Raspberry Pi 4, which can be attached to a
drone that allows farmers to automatically and efficiently detect
infected leaves. This result has a significant capability for many
future applications in smart agriculture.

Index Terms—smart agriculture, leaf diseases, vision trans-
former, Raspberry Pi

I. INTRODUCTION

In Africa, cassava is the second-largest source of carbo-
hydrates. There are about 300 million Africans who consume
cassava as primary nutrition every day. It is also a stable source
of income for subsistence farmers due to the drought and
pest-resistant characteristics. However, many plant diseases,
especially leaf diseases, significantly affect cassava production
quantity and quality. These diseases open a new challenge
in the smart agriculture area, requiring considerable work
for early and effectively detecting infected cassava leaves.
Consequently, the profit of the cassava industry has been
guaranteed.

With the development of computer vision in recent years,
it is now possible to analyze leaf diseases without the
farmers’ observation, reducing time consumption, increasing
accuracy, and protecting crops in time. Many studies are
carried for this purpose, mainly divided into machine learning
and deep learning-based approaches. However, the machine
learning-based methods [1]–[4], generally require complex
preprocessing and specific disease feature extraction before
analyzing diseases. For solving these problems, many deep
learning models are applied with high accuracy in plant
disease detection, such as Faster Region-based Convolutional

Neural Network (F-RCNN) [5], [6], SSD with Inception
module, and Rainbow concatenation (INAR-SSD) [7], Deep
Residual Dense Network [8], ResNet [9], EfficientNet [10].
Nevertheless, these deep models usually require substantial
computational resources during the training phase. This lim-
itation motivates the release of Vision Transformer [11] -
a novel deep learning model which consumes significantly
fewer arithmetical calculations to train than previous models.
In Vision Transformer (VIT), a pure transformer encoder is
directly utilized to sequences of image patches to accomplish
image classification responsibilities. The experiments in [11]
show that ViT achieves comparative results with the state-of-
the-art CNNs while the computational cost is exceptionally
reduced in the training phase. As far as we know, this paper
is the first research that exploits the Vision Transformer (ViT)
model for cassava leaf disease classification. Our experiments
show excellent results compared to modern models such as
EfficientNet, Resnet50 on Cassava Leaf Disease Dataset, pub-
lished by Makerere University and National Crops Resources
Research Institute. This is consistent with the findings of [11]–
[13], which suggest that ViT can perform very well in image
classification tasks. The main contributions of this paper are
listed below:

• We exploit ViT for detecting infected leaves. We first
use the ViT model pre-trained on ImageNet - 21k [14],
published by Google Research Team. Then, we retrain
this model using Cassava Leaf Disease Dataset [15]
to improve the model’s accuracy for analyzing infected
leaves task. Subsequently, the model is quantized for
reducing the size and accelerating the inference step.

• We successfully deploys the quantized model onto the
Edge device named Raspberry Pi 4 Model B. This device
can be attached to a fly-cam to form the Drone Pi for real-
time detection of infected leaves. This success will pave
the way for early leaf disease detection, an essential part
of smart agriculture.

The rest of the paper is organized as follows: Section II
discusses related works using traditional machine learning
and deep learning for leaf diseases detection, Section III
presents our proposed approach, Section IV shows the result
and discussion, followed by the conclusion in Section V.



II. RELATED WORKS

A. Machine learning approach

In the last decade, several traditional machine learning
methodologies (e.g., K-Means clustering and support vector
(SVM)) have been employed to identify and detect disease
on plant leaves. The authors in [3] propose a model using
image processing and SVM classifier for detecting diseases on
cotton leaves. Yao et al. [4] use a similar approach to detect
diseases on rice leave early and precisely. The presented SVM
is capable of effectively classify various rice diseases (rice
bacterial leaf blight, rice sheath blight, and rice blast) reported
about 97% accuracy. Waghmare et al. [2] exploit a unique
fractal to retrieve the segmented leaf texture and multiclass
SVM for detecting common grape diseases. [1] introduce
a novel image processing method and an artificial neural
model to diagnose the disease of brinjal leaf. The authors
apply K-Means clustering to extract appropriate features as the
input of the model. However, the presented machine learning
approaches require multiple preprocessing and extraction steps
which are unsuitable for real-time detection or tasks requiring
high performance.

B. Neural Network approach

Artificial neural network (ANN) exploits the combination of
texture and color features to perform the leaf disease classifica-
tion task. For example, in [16], [17], the authors use K-Means
to extract image features before using these vectors for training
the ANN classifier. Similarly, Sammany and Medhat [18]
apply neural networks enhanced by genetic algorithms and
support vector machines (SVM) to diagnose plant diseases.
The study in [19] uses the Gabor filter to extract features and
an ANN classifier to classify healthy and diseased samples.
Recently, the authors in [20] utilize a hybrid metaheuristic
feature selection and feed-forward neural network to identify
mango leaves diseases. However, these ANN classifiers have
low performance in some complex classification categories.
Recent years have seen a rise in the number of deep learn-
ing studies, including image classification, object detection,
and segmentation tasks [21]. With the continual advances
in deep learning, many researchers aim to optimize deep
neural networks for classifying crop diseases. For instance, the
authors in [5] apply Faster Region-based Convolutional Neural
Network (F-RCNN) to detect and recognize tomato plant leaf
disease. Subsequently, Zhang et al. [6] improve F-RCNN by
replacing VGG16 with a depth residual network resulting in
2.71% higher recognition accuracy compared with previous
work. An optimized CNNs named INAR-SSD (SSD with
Inception module and Rainbow concatenation) is proposed
in [7] for real-time detecting apple leaf diseases. In [8], the
authors attempt to restructure Deep Residual Dense Network
for classifying Tomato leaf diseases within fewer parameters
but higher accuracy than the original model.

III. PROPOSED APPROACH

A. System overview

As a result of recent advances in IoT, many industries,
including agriculture, have been disrupted. IoT is an indispens-
able factor for improving agricultural quantity and quality at a
lower cost. In the following years, the smart solution’s usage
powered by IoT will increase in the agriculture industry. As
potential representatives, ground and aerial drones are widely
utilized to evaluate crop health, crop monitoring, planting, crop
spraying, and field analysis in smart agriculture. This paper
proposes a system based on the Drone Pi, which is combined
from a drone and a Raspberry Pi, for the early detection of
infected leaves as shown in Fig.1. In this system, the Drone
Pi is utilized to assess crop health via detect disease affecting
leaves by the following steps:

• The Drone Pi’s camera captures cassava leaf images,
including the exact position of the spot in yield.

• A deep learning model named ViT, installed on the Drone
Pi, is applied to classify and cluster infected leaves.

• The ViT classification’s results, combine with the spot’s
position, are real-time send to the server via the 4G
network to create a survey map about leave diseases
of the cassava field. The farmers and rescue agency
can instantaneously obtain this map via mobile devices
and noticed the crop health problems beforehand, which
prevents the high amount of loss or in some cases crop
failure.

B. Cassava Leaf Disease Detection

As the central heart of the system, our Cassava Leaf Disease
Detection mechanism exploits the Vision Transformer model
to identify infected leaves.

The Transformer, a transduction model based entirely on
self-attention mechanisms, has played an essential role in
various computer vision tasks. The authors in [22] propose
this model as a simple network architecture but exceptionally
effective in machine translation. Then, many studies attempt
to apply Transformer to different natural language process-
ing (NLP) tasks ranging from syntactic analysis to sematic
analysis [23]–[29]. Based on NLP tasks’ achievements, many
researchers have recently integrated self-attention mechanisms
and Transformer models with Convolution Neuron Networks
to create a hybrid model to enhance vision tasks’ perfor-
mance [30]–[36].

In contrast, the authors in [11] propose a full version of
the transformer model named Vision Transformer (ViT) that
reaches state-of-the-art performance on the image classifica-
tion task. ViT is pre-trained on large datasets (e.g., JFT300M)
and then transferred to multiple mid-sized or small image
recognition benchmarks. In this paper, we utilize this model
for classifying on Cassava Leaf Disease Dataset as shown in
Fig.2, including the following steps:

• Splitting the cassava leaf image into fixed-size patches.
The dimension of each patch can be 16x16 or 32x32.



Fig. 1: Smart Agriculture Scenario for Cassava Plants

• All image patches are flattened and added with the
positional embedding vector. A special token is also
added at the start.

• All embedded patches are put into Transformer Encoder.
• The previous step’s output is passed directly to Feed

Forward Neural Network to classify and cluster images
into five categories: CBB, CBSD, CGM, CMD, and
Healthy.

Concretely, our Cassava Leaf Disease Detection mechanism
includes two stages: training and inference stage, as shown
in Fig.3. In the former stage, the pre-trained ViT model is
retrained using Cassava Leaf Disease Dataset for classifying
infected leaves. The output model is then quantized to reduce
the size (from about 220MB to 84MB) for compatibility to
the edge device with limited resources. Then, the quantized
model is deployed onto the Drone Pi to perform classifying
and clustering infected leaf images task in the inference stage.

Fig. 2: ViT model for Cassava Leaves Disease Detection

Fig. 3: Cassava Leaf Disease Detection mechanism

IV. RESULTS AND DISCUSSION

A. Dataset

This paper uses a dataset named Cassava Leaf Disease
Dataset. This dataset includes 21397 images of cassava leaves
divided into five categories: CBB, CBSD, CGM, CMD, and
healthy leaves. Most images are taken from farmers and an-
notated by experts in Makerere University and National Crops
Resources Research Institute. Fig. 4 depicts the representative
of each category. Images are then resized to 224x224 as the
requirement of the ViT model. To experiment, we use the
k-fold cross-validation method with k = 5. The ratio of the
training dataset and validation dataset is 4:1. The detail of
training/validation images of each disease is shown in Table
I.

B. Exprerimental enviroment and evaluation/measurement
metrics

The model has been deployed and verified on Raspberry
Pi 4 Model B with the specifications are shown in Table II.
We use the F1 - score as the evaluation metric, which is the
harmonic mean of precision and recall.



Fig. 4: Five common types of cassave leaf diseases

TABLE I: Cassava leaf disease dataset

Label Disease Training Validation Total Images
0 CBB 870 217 1087
1 CBSD 1752 437 2189
2 CGM 1908 478 2386
3 CMD 10526 2632 13158
4 Healthy 2061 516 2577

17117 4280 21397

F1 =
2 ∗ (precision ∗ recall)
(precision+ recall)

(1)

precision =
TP

(TP + FP )
(2)

recall =
TP

(TP + FN)
(3)

TP (True Positive) represents the number of positive images
classified correctly. FP (False Positive) denotes the number
of negative images classified incorrectly. FN (False Negative)
represents the number of undetected positive images. The
model was trained on ImageNet - 21k by Google researchers.
Then, we retrain and evaluate this model on the Cassava Leaf
Disease Database.

C. Results

Table III shows the result of the evaluation per category,
including precision, recall, and F1-score. As can be seen, the
highest score belongs to the classifying CMD task with a
96% F1-score. The second-highest F1-score belongs to the
identification of CBSD task, followed by CGM, Healthy with
86%, 83%, and 79%, respectively. The lowest score belongs
to the CBB disease classification with a 74.5% F1-score. This

TABLE II: Experimental enviroment

Equipment Specifications
Name Raspberry Pi 4 Model B

System Ubuntu 18.04
Framework torch 1.9.0, torch vision 0.9.0
Language Python 3.7.3

CPU Quad core Cortex-A72 (ARM v8) 64-bit SoC @1.5GHz
RAM 8GB LPDDR4-3200 SDRAM

disease has the lowest score due to its significant within-class
variations: first, symptoms are visible as translucent water-
soaked spots; then, these translucent spots become dark green
spots; finally, spots expand, nearby spots merge to create
large brown patches. Meanwhile, the scores of other infected
categories are higher than 83% due to the minor differences
among lesions’ patterns from the same category. In addition,
the variety of lesions’ appearances between categories is sub-
stantial. Therefore, these infected categories can be effectively
classified by our approach.

Fig. 5a depicts the training and validation loss through
165 epochs. After 165 epochs, the training and validation
loss scores decrease to an optimal value around 0.2 and 0.4,
respectively, and converge. As shown in Fig. 5b, when the
epoch value increases from 1 to 20, the training accuracy
grows sharply from 81% to 88%, and validation accuracy rises
from 77% to 84%. Afterward, these values fluctuate upward
before reaching the highest value at 95% refer to the training
accuracy, and 90% refer to the validation accuracy. From these
results, it is clear that ViT model is fast convergent over 165
epochs with high accuracy.

Table IV illustrates the comparison with the state-of-the-
art models on the cassava leaf disease dataset. The ex-
perimental results of these comparison models are taken
from [37] through 165 epochs. Regarding to EfficientNet
models, EfficientNetB3 achieves 88.1% weighted-average F1-
score while EfficientNetB4 and EfficientNetB5 reach 88.3%
and 88.7% weighted-average F1-score, respectively. Finally,
EfficientNetB6 attains the highest score of Efficient models
with an 89.1% weighted-average F1-score. Meanwhile, the
Resnet50 model achieves an 89.2% weighted-average F1-
score. Our system uses the Vision Transformer model, which
obtains the overall highest score, 90.3% weighted-average F1-
score. In addition, the results from all comparison models also
show that the CBB classification score is the lowest through
the experiments. Hence, it can be concluded that CBB is the
most complex category in Cassava Leaf Disease Dataset. The
experiment results highly indicate again that the ViT model
can achieve competitive scores compared with state-of-the-art
models in the classifying cassava leaf diseases task.

V. CONCLUSION

This paper builds a system that relies on the ViT model to
identify infected leaves with full promising results. We then
successfully quantize the model to reduce the model size by
the factor of three and deploy it onto the Raspberry Pi 4
Model B. In the future, we intend to attach this device to a

TABLE III: Classification performances of each category

Category Precision Recall F1-score
CBB 79 70 74.5

CBSD 87 85 86
CGM 81 85 83
CMD 96 96 96

Healthy 78 80 79
overall 90 90 90



(a) Training, validation loss (b) Training, validation accuracy

Fig. 5: Training, validation loss and accuracy through 165 epochs of our approach

drone to directly analyze and identify the infected leaves from
the camera. This work will help detect early diseased plants,
potentially protecting their yield before causing irreparable
damage, making a small contribution to developing smart
agriculture.
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