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Abstract—Convolutional neural network algorithms have been
applied widely in chest X-ray interpretation thanks to the
availability of high-quality datasets. Among them, VinDr-CXR is
one of the latest public dataset including 18000 expert-annotated
images labeled into 22 local position-specific abnormalities and 6
global suspected diseases. A proposed deep learning algorithms
based on Faster-RCNN, Yolov5 and EfficientDet frameworks
were developed and investigated in the task of multi-class clinical
detection from chest radiography. The ground truth was defined
by radiologist-adjudicated image review. Their performance was
evaluated by the mean average precision (mAP 0.4), which can
be accessed via Kaggle’s server. The results shows the best
performance belonging to ensembled detector model combined
with EfficientNet as the classifier with the accuracy peak of 0.292.
As a trade-off, ensembling detectors was much slower, which
increases computing time by 3.75, 5 and 2.25 times compared to
FasterRCNN, Yolov5 and EfficientDet, respectively. Overall, the
classifiers shows constantly improvement on all detector models,
which is highly recommended for further research. All of this
aspects should be considered to address the real-world CXR
diagnosis where the accuracy and computing cost are the most
concerned.

Index Terms—chest X-ray, abnormality detection, CNN, radi-
ologist

I. INTRODUCTION

Chest X-ray (CXR) diagnosis is a very important expertise
enabling the ability to identify many types of diseases related
to organs inside the chest area. The earlier and more accurate
the diagnosis is, the more lives could be saved. Thus, diagnosis
time and accuracy are the key factors for radiologists to
concern . While the qualified-radiologist resources has not met
the demand of this job [1], a computer-aided diagnosis (CAD)
has been built and developed to support them in diagnosing
common diseases or at least making decision faster and more
accurate [2].

The rise of deep learning applications in medical image
processing has been massive recently along with the availabil-
ity of high-quality datasets with expert-generated annotations
[3]. Deep convolutional neural network (CNN) has been im-
proved remarkably to perform important medical applications
at expert level [4]. In CXR diagnosis, some previous works
showed good performance in interpreting CXRs with advanced
CNN algorithm. For example, [5] proposed a deep learning
algorithm to detect successfully abnormalities on CXRs but
failed to categorize specific findings due to spectrum bias and

lack of generalizability. Basically, these issues were partly
solved by [6], using labeled data with radiologist-adjudicated
reference. Their model was able to detect correctly pneu-
mothorax, opacity, nodule or mass, and fracture from CXRs.
For wider range of classification, [7] developed CheXNeXt
to detect 14 different pathologies from chest x-ray focusing
in thoracic diseases, then validated model with radiology
experts. Although some models have claimed that their model
reached expert-level performance [8], many aspects need to
be considered for ready adoption in real-world applications
[9]. Some research questioned the lack of data generalization
accrossing institutions, the uncertainty of large-scale hand-
annotation medical images and radiology-text meaning which
reflecting medical nature [10]–[12].

To expand the hands-on applications in this field, this paper
reported critical tasks of anomaly diagnosis for a wide range
of abnormalities and diseases using different state-of-the-art
neural networks. The VinDr-CXR datasets [3] was chosen with
the training set of 15000 and a test set of 3000. Using web-
based labeling tools developed by Vinlab, each image was
annotated into 22 local abnormalities and 5 global diseases
by board-certified radiologists. The main contributions of this
work are listed as follows:

• An in-depth exploratory data analysis (EDA) was con-
ducted on VinDr-CXR dataset to reflect its properties and
then suggested the appropriate method.

• According to recent reviews [13], [14], there has been
very few open pipeline for radiography abnormally de-
tection. This work proposed a novel framework cover-
ing well-known object detectors. 2-class classifier was
conducted on external dataset. Then, it was adopted in
inference phase in order to reduce false positive and boost
the performance of the whole pipeline. Cross validation
strategy was applied in training phase while inference
phase utilized many ensemble techniques [15], [16].

• Lastly, a comparative evaluation was analyzed in terms
of accuracy and computing cost. The recommendation
in CXR-diagnosis applications was highlighted in this
section.

This paper was organized into 5 sections. After introduction,
some related works was reviewed in section II. In section III,
the proposed framework was described. Experimental results



then were analysed in section IV. Section V concluded and
proposed recommendation for future works.

II. RELATED WORKS

With high-quality dataset of CXRs such as CheXpert [17],
Padchest [18], MIMIC-CXR [19] and recently VinDr-CXR [3],
CNNs achitectures have seen a remarkable success in recent
years. Among the most successful models, [20] classified
large-scale dataset called ImageNet LSVRC-2010 into 1000
different classes with average error rate of 16.4%. Despite
utilizing dropout regularization and non-saturating neurons, it
still faced very high computing cost and time due to complex
neural networks with 60 million parameters. To make multi-
class classification tasks simpler as [21] showing outstanding
performance, 2-class classifier was applied for external dataset
in this research to quickly identify abnormal findings from
normal CXRs. Further to multi-category classification for
abnormal CXRs in inference phase, these algorithms have
shown their drawbacks dealing with imbalanced classes in
dataset as well as labeled errors during processing [22], [23].
Hence, this research utilized albumentation [24], a fast and
flexible data augmentation technique to diversify the training
and validation set by performing different transformations
while keeping the same output labels. These transformation
can be related to color, contrast, brightness, position and scale.
This technique is very important due to the extreme imbalance
of the VinDr-CXR dataset [3], which was presented in the next
section. Moreover, dropout regularization was also applied to
these models to reduce overfitting, which has been proved to
be effective [25].

In this paper, we reported the deep-learning CNNs perfor-
mance on the multi-category classification of CXRs. Com-
pared to other architectures for COVID-19 binary classifica-
tion from CXRs, while YOLO predictor was based to build
successfully CAD to diagnose COVID-19 from other common
diseases with accuracy of up to 97.4% [26], Faster-RCNN and
EfficientNet based models reached the accuracy of 97.36% and
97%, respectively [27], [28]. For multi-class cases, YOLO-
based model performed real-time up to 87% accuracy [29].
Based on these successful research, various CNN architec-
tures such as YOLO [26], [30], Faster-RCNN [27], [31],
and EfficientNet [28], [32] were trained and validated in this
work, then evaluated by the test set which was labeled by the
consensus of 5 radiologists [3]. For comparison, mean average
precision was used as evaluation metric.

III. PROPOSED FRAMEWORK

This research proposed a framework as illustrated in Fig.
1. For model training, the flowchart includes 4 steps as
shown in Fig. 2. First of all, the DICOM-format dataset is
processed and resized into 1024x1024 images in png format.
Secondly, external datasets such as ChestXray14 and Padchest
are collected, then only global labels are filtered and unified
into a classification dataset for training the 2-class classifier
as described in III-B. Next, augmentations with Albumenta-
tions are adopted to diversify data to avoid overfitting and

resolve the issue of imbalance dataset. The last step is to
utilize the stratified k-fold cross validation during training
detectors. Later, the final model zoo can be used for proposed
framework. The following sections describe detail of each
component including image augmentation, 2-class classifier,
CXR abnormality detectors, validation strategy and ensemble
technique. Finally, for testing, 3000 images of the test set are
fed into 2-class classifier before applying different detectors to
localize abnormalities. Then, Weighted Boxes Fusion (WBF)
ensembles output from different techniques before validating
final results.

A. Image augmentation

Image augmentation is used in computer vision tasks with
the purpose of increasing the quality of trained models by
diversifying label via creating new training samples from the
existing data. Albumentations [24], a fast and flexible Python
library, is currently the most popular augmentation library.
Containing more than 70 different augmentations written by
experts, it is widely used in industry, deep learning research,
machine learning competitions, and open source projects.
From the aforementioned EDA, we utilized Albumentation
during training phase as illustrated in Fig. 3. Labels from
multiple images were merged with many operators like blur,
random contrast, RGB shift and channel shuffle.

B. 2-class classifier

The dataset is split up into 15 classes - 14 of which are
abnormalities, and therefore must have bounding boxes placed,
and one of which indicates no finding, and therefore, an
absence in bounding boxes. This leads to an issue of excessive
false positives - if an image indeed has no finding, we should
not place bounding boxes. However, false positives are desired
on images with abnormalities in order to optimize for the
mAP metric. One possible way to mitigate this challenge is
by separating the tasks of identifying images with no finding;
we can use a classifier CNN to classify between images of
no finding and images with abnormalities. Then, a detector
is adopted to localize and classify into the remaining 14
abnormal classes. Experiments showed that Resnet50 [33]
significantly accelerates the scores as well as reduces many
false positive predictions on images with no finding. Thus,
Resnet50 was adopted for its robustness. EfficientNet [34],
which has shown promising results in other object classifica-
tion tasks, is also integrated to this framework for ablation
study purpose. As only global label is required for training
classifier, all datasets in the data collection was used to train
these CNNs. Diversity and huge amount samples from this
training set makes this classifier very responsive and sensitive.
In addition, we proposed a class-aware sampler to over-sample
uncommon classes.

C. CXR abnormality detector

• FasterRCNN: Originating from RCNN models , Faster-
RCNN [35] is an notable representation of the two-stage
object detection models. In these detectors, sparse region



Fig. 1: Proposed framework for CXR abnormality detection.

Fig. 2: Training flowchart for CXR abnormality detection.

Fig. 3: Albumentation generation from VinDr-CXR dataset

proposals are generated in the first stage and then further
regressed and classified in the second stage. RCNN uti-
lizes Selective Search to generate proposals, then adopts
CNN to extract features for training SVM classifier and
bounding box regressor. FastRCNN extracts features for
each proposal on a shared feature map by spatial pyramid
pooling. It integrates the region proposal process into the
deep convnet and makes the entire detector an end-to-end
trainable model. In this paper, we employed FasterRCNN
model pre-trained on COCO dataset and then fine-tune on
CXR datasets via Detectron2 [36].

• Yolov5: Single-stage detectors, such as YOLO and SSD
treat object detection as a simple regression problem by
taking an input image and learning the class probabilities

and bounding box coordinates. Such models reach lower
accuracy rates, but much faster than two-stage object
detectors. We adopted YOLOv5 as the latest version from
the YOLO model family [37]. It improves YOLOv4 with
several bags of features and modules such as SiLU activa-
tion and Mosaic data augmentation to achieve robustness
along with an impressive accuracy.

• EfficientDet: EfficientDet [38] achieves the best per-
formance in the fewest training epochs among object
detection model architectures, making it a highly scal-
able architecture especially when operating with limited
computing resources. The detector is the object detection
version of EfficientNet, building on the its image classi-
fication tasks. It has been developed by (i) a weighted bi-
directional feature pyramid network (BiFPN) with better
accuracy and efficiency trade-offs, which allows easy and
fast multiscale feature fusion; (ii) a compound scaling
method that uniformly scales the resolution, depth, and
width for all backbone, feature network, and box/class
prediction networks at the same time . The network was
delivered in a series of model sizes D0-D7. The model of
choice for our work is EfficientDet-D7 which pretrained
on the COCO dataset.

D. Validation strategy

We used group multiple label stratified k-folds, stratified on
the class labels of each image, and grouped images based on
its names. We evaluate 2-stage models together by combining
predictions from the detection model along with the 2-class
classifier to produce a unified set of labels, which were then
optimized based on mAP 0.4. For our single stage detection,
we used identical postprocessing, evaluating following post-
processing.

E. Ensemble technique

The result of an object detection model is the location of an
object with the confidence score of a class. As the predicted
bounding box depends on various features of the class, the
model generates many bounding boxes for a single class. Non-
Maximum Suppression (NMS) is one of the techniques to
overcome the problem where only a predicted box from the list
of boxes is taken into consideration based on an IoU threshold.
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Fig. 4: Example of applying WBF ensemble technique.

TABLE I: Description of collected chest X-ray datasets.

Dataset #Class #Label Annotation Year
MC [39] 1 138 Classification 2014
SH [39] 1 662 Classification 2014
Indiana [40] 10 8121 Classification 2016
ChestX-ray14 [41] 14 112120 Classification 2017
CheXpert [17] 14 224316 Classification 2019
Padchest [18] 193 160868 Classification 2019
MIMIC-CXR [19] 14 377110 Classification 2019
JSRT [42] 1 247 Detection 2000
ChestX-ray8 [41] 8 108948 Detection 2017
VinDr-CXR [3] 15 18000 Detection 2020

NMS works well for single model prediction whereas for
ensembling multiple models, Weighted Boxes Fusion (WBF)
[15] shows better results compared to NMS and Soft-NMS
[16]. Unlike NMS, WBF calculates the average of all predicted
confidence scores and bounding boxes instead of eliminating
extraneous boxes. Fig. 4 shows an example of ensemble of
bounding boxes from 14-class detection.

subfig

IV. EXPERIMENTS

A. Chest X-ray data collection

Tab. I summarizes CXR data collection from available
public dataset. Among them, VinDr-CXR dataset is the latest
one with 18,000 postero-anterior (PA) CXR scans in DICOM
format, which were de-identified to protect patient privacy
[3]. All images were labeled by a panel of experienced ra-
diologists for the presence of 14 critical radiographic findings
such as Atelectasis, Pneumothorax, etc. The label correlogram
visualizes the dataset in a glimpse as shown in Fig. 5. The
top-left subfigure shows clearly the imbalance among classes,
especially between normal CXRs (class 1) and others (class 2-
14). It is improved by albumentation augmentation technique
as mentioned in III-A.

B. Evaluation protocol

All experiments were conducted on a Kaggle notebook
using Tesla P100 16GB. We used the mean Average Precision
(mAP) at IoU 0.4 since this is the most popular metric in object

Ao
rti
c 
en
la
rg
em

en
t

At
el
ec
ta
sis

Ca
lci
fic
at
io
n

Ca
rd
io
m
eg
al
y

Co
ns
ol
id
at
io
n

IL
D

In
fil
tra

tio
n

Lu
ng

 O
pa
cit
y

No
du

le
/M
as
s

Ot
he
r l
es
io
n

Pl
eu
ra
l e
ffu

sio
n

Pl
eu
ra
l t
hi
ck
en
in
g

Pn
eu
m
ot
ho
ra
x

Pu
lm
on
ar
y 
fib
ro
sis

0

1000

2000

3000

4000

5000

6000

in
st
an
ce
s

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
width

0.0

0.2

0.4

0.6

0.8

1.0

he
ig
ht

0.0

0.2

0.4

0.6

0.8

1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

wi
dt
h

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

he
ig
ht

0.0 0.5 1.0
y

0.0 0.5 1.0
width

0.0 0.5 1.0
height

Fig. 5: Labels correlogram. Top-left histogram shows class
frequency while the next to plot is a snapshot of labels
in normalized height and width space. Diagonal histograms
represent the distribution of each variable (x, y, width, height)
of the finding’s centroid and bounding box. Therelationship
between each pair of variable is visualised via scatterplots.

detection domain. Submission was uploaded via Kaggle server
and was evaluated by the competition’s host.

C. Results and discussions

Tab. II shows comparison between methods integrated in
the proposed framework on VinDr-CXR dataset. Overall, as
classifiers are concatenated before detectors, the outcomes
expands remarkably. In Fig. 6, the single model represented by
the red line performs consistently worse than other concate-
nated methods regardless different detectors applied, though
it gets accuracy peak of 0.272 in ensembling case. To high-
light the importance of classifiers, for instance, the Yolov5
model’s accuracy increases from 0.248 to 0.263 and 0.278
when Resnet50 and EfficientNet are respectively applied. This
demonstrates that in the test dataset, many samples were
found false positive by the detectors. The utilization of a
classifier lessens these circumstances, subsequently diminishes
the tension on the detection stage and increased the accuracy of
the entire system. In particular, the classifiers greatly increase
the accuracy of the system even in case of applying to a
weak detector such as FasterRCNN. In this case, the mAP
has increased by 17% and nearly 30% when applying Resnet50
and EfficientNet respectively. However, with a highly accurate
detector like EfficientDet, the use of additional classifiers
showed no significant improvement, only 0.011 and 0.004 for
Resnet50 and EfficientNet respectively.

Another point that can be drawn from Figure 6 is that the
EfficientNet classifier shows superiority over the Resnet50.
On the same detector, EfficientNet usually gives a higher
result than Resnet50. This finding is plausible and expected
since many studies have shown the complexity and enhance-
ment of the EfficientNet model compared to Resnet50 on
several datasets [28], [32]. When combined with FasterRCNN,
Yolov5, and Ensemble, EfficientNet outperformed Resnet50.
However, in the EfficientDet case, the EfficientNet, with an
accuracy of 0.273, proved to be inferior to the Resnet50’s
accuracy of 0.28. Because the classifier did not detect new



TABLE II: Evaluation of the proposed framework on VinDr-CXR dataset

Detector Accuracy (mAP@0.4) Performance
Single model Resnet50 EfficientNet-B7 Speed (FPS) GPU memory requirement (MB) Training time (hour)

FasterRCNN 0.21 0.246 0.269 15 3291 7
YOLOv5 0.248 0.263 0.278 20 2076 9.5
EfficientDet-D7 0.269 0.28 0.273 9 3685 12
Ensemble 0.272 0.285 0.292 4 3685 30.5

functionality due to the replication of using EfficientNet as
the backbone network in the EfficientDet model.

The experiments in this study indicate an obvious effect
of an ensemble tactic, particularly the WBF in this case .
Combining the individual results of each model together, the
end result always increases in all three scenarios. The fusion
of the EfficientNet classifier, led by single detectors, improves
accuracy the most, rising from 0.278 to 0.292. For single
detectors, the outcome is boosted from 0.269 to 0.272. This
WBF technique has been widely used by most teams in this
competition.

In term of single detection model precision, Tab. II evidently
indicates that EfficientDet with a score of 0.256 generally
outperforms the other detectors. Yolov5 ranked second with
0.248 while FasterRCNN proved quite weak compared to
peers and attains only a fifth. Among those detectors, Faster-
RCNN shows the worst results, with the best performance
accuracy of 0.269 when combining with EfficientNet.

When assessing system performance, we only need to
compare the time and memory taken when referencing on
individual detectors regardless of whether or not classifiers
are connected since the computational bottleneck mainly lies
in the detection stage. Of course, the computational cost of
the classifier does exist, but but it is minor in comparison
to the detector. From Tab. II, the only single-stage detector,
Yolov5, gives the fastest reference speed, 20 FPS. Deputy
of two-stage detectors, FasterRCNN references a time of 15
FPS while EfficientDet is the slowest at about 9 FPS. The
memory required when referencing the Yolov5 model is also
impressive, just 2GB of GPU while its peers require over 3GB
GPUs. The training time is fastest in the case of FasterRCNN
with 7 hours and is the longest in the case of EfficientDet
with up to 12 hours. In terms of computational cost, Yolov5
clearly strikes the optimal balance in terms of speed, memory
requirement and required training time. One thing to keep
in mind by using ensemble method is that we have to pay
an expensive cost in terms of speed and training time. The
reference speed is greatly reduced, only 4 FPS, because we
need to aggregate the results separately from all single models,
so it takes time to refer sequentially samples on each model.
Similarly, the training time increases dramatically to more than
30 hours because all individual models need to be trained.
Running the models in parallel is not feasible, so the required
memory is calculated to be the maximum of the required
memory in all cases, approximately 3,5GB GPU.

From the individual analysis mentioned above, we draw
some suggestions about the selection of the appropriate
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Fig. 6: Evaluation of combination of classifier and detector in
the proposed framework.

method for practical applications. For tasks that require a high
level of precision, using both a classifier and an ensemble
technique is essential. We propose to train the data with all
three detectors alongside with the EfficientNet classifier, and
then use an ensemble technique in reference stage. Although
there is a high cost, this method will be very effective in cases
such as research labs, or cases of life-threatening illnesses.
On the contrary, in the situation of a need for fast diagnostic
rates for the purpose of basic screening to save costs, or when
the number of samples to be predicted is large, the single
model Yolov5 seems to be the most reasonable option. An
additional combination of the EfficientNet classifier may be
considered to improve accuracy at a small cost. Another option
is to use EfficientDet for a slightly higher accuracy at a slower
speed. Although the single model FasterRCNN proves inferior
in terms of accuracy and cost, it is still possible to utilize this
model into an ensemble technique.

V. CONCLUSIONS

In conclusion, this research highlighted the importance of
solving the class imbalance in working with VinDr-CXR, one
of the latest high-quality datasets. A proposed framework with
a combination of 3 classifier options and 4 model detectors
was tested and cross-validated with the test dataset. The 2-
class classifier and ensemble technique for detector model
was highly recommended for further study since their com-
bination presented the best accuracy of 0.292. The comput-
ing time and system performance were also analyzed for a



well-rounded consideration when applying in different CXR-
diagnosis situations. Code is at https://github.com/pvtien96/
CXRAbnormalityLocalization.
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