

Implementation of a Dual-core 64-bit RISC-V on
7nm FinFET process

Van-Ninh Ho, Duc-Hung Le1*
1 University of Science, Vietnam National University Ho Chi Minh City, Vietnam

* Email: ldhung@hcmus.edu.vn

Abstract— This paper presents a back-end implementation of a
Dual-core 64-bit RISC-V using the proposed digital ASIC
design flow with hardware construction language Chisel. A
design flow started from the Chisel code of Dual-core 64-bit
RISC-V generated from Chipyard. After that, Verilog source
code was converted from Chisel with the configured Dual-core
64-bit RISC-V architecture. This design was successfully
implemented on TSMC 7nm FinFET process with the proposed
ASIC design flow and design techniques for complex CPU
designs. The Dual-core 64-bit RISC-V has a core size of 1.17 x
1.17mm, operating at maximum frequency 500MHz, and
consuming power 493.7mW.
Keywords— RISC-V, Dual-core, 7nm FinFET.

I. INTRODUCTION

RISC-V is not a microprocessor (CPU), but a free, open-
source set of Instruction Set Architecture (ISA) that is based
on the principles of the RISC architecture. With the fixed
ISA specification, designers can build their own ISA sets. A
study by Semico company forecasts that the market will
consume 62.4 billion cores of CPU cores RISC-V by 2025,
of which the industrial array will account for 16.7 billion
cores. Therefore, the RISC-V will gradually be popular and
gain more market sharing in the near future. In addition, the
fact that NVidia has officially acquired ARM Holdings will
make the battle of CPU cores between brands even more
fierce, as chip design companies now have to consider
choosing between the costs. out and bring efficiency to
deliver customers the best performance products. ARM's
acquisition by Nvidia also questioned the designers of the
early ARM's advanced customization.

The goal of this paper is to study the complete RISC-V
architecture along with the chip design process from Chisel
(open-source) to RTL and from RTL to GDSII with EDA
tools and back-end design techniques. More specifically, a
multi-core processor, with open-source ISA from RISC-V,
high frequency clock speed, and complete full set of tests
was successful implemented for tape-out. First, Verilog
codes would be configured and generated by the open-source
Chisel language, a scalar language set, with a variety of
highly customizable CPU core configurations. Then, RTL
would be synthesized using the Cadence Genus tool. Next,
the netlist will be imported for place-and-route (PnR) using
the Cadence Innovus tool to generate the physical layout
design. Finally, Physical Design Verification (PDV) tests
would be used for verification by using the Mentor Graphic
Caliber rule deck tool. Furthermore, during the

implementation, advanced techniques in synthesis, in PnR, in
PDV such as: using ULVT cells, useful skew technique,
multi power cell library, shielding clock nets, non-default
rule, etc. would be also used to increase design efficiency
and clock speed.

II. FINFET TECHNOLOGY

Fig. 1 shows the structure of a FinFET device. The
FinFET device consists of a thin silicon body, with thickness
of tfin at is wrapped by gate electrodes. The device is termed
quasi-planar as the current flows parallel to the wafer plane,
and the channel is formed perpendicular to the plane. The
effective gate length �G twice as large as the fin height hfin
that we define a FinFET technology by their effective gate
lengths. Therefore, �G set to be 7nm in 7nm FinFET device
models. In this work, we focus on the shorted-gate FinFET
devices because they provide better driving strength. The
7nm FinFET device models are adopted from [1].

Fig. 1. (a) Perspective view and (b) top view of the 7nm FinFET device.

7nm FinFET standard cell libraries contain all typical
types of combinational cells and sequential cells. Each cell is
carefully sized to achieve equal rise and fall times at the
characterization supply voltage level. The standard cell
libraries are built in the Synopsys Liberty format [2], which
is widely used for logic synthesis and static timing analysis.
With the presented libraries, various benchmark circuits were
synthesized; and their dynamic and static power
consumption results were also reported. Comparisons
between 7nm FinFET standard cell libraries and
conventional CMOS libraries such as 14nm and 45nm, are

carried out for same benchmark circuits. Synthesis results
demonstrate that 7nm FinFET technology can achieve 10X
and 1000X energy reductions on average in the super-
threshold regime, and 16X and 3000X energy reductions on
average in the near-threshold regime, compared to those
results of 14nm and 45nm bulk CMOS technology nodes.
This work forecasts the power consumptions of 7nm FinFET
technology, while an analysis of process-induced variations
at this technology node can be found in [3].

III. DUAL-CORE 64-BIT RISC-V IMPLEMENTATION

A. Chisel and RISC-V Introduction

Chisel is an open-source hardware construction language
embedded in Scala [4]. It supports advanced hardware design
using highly parameterized generators and supports RISC-V
cores such as Rocket Chip and BOOM.

RISC-V is an open standard instruction set architecture
based on established RISC (Reduced Instruction Set
Computer) principles [5, 6]. The project RISC-V started in
2010 at UC Berkeley. Comparing to ARM and x86, RISC-V
has the following advantages:

 Free: RISC-V is open-source.
 Simple: RISC-V is much smaller than other

commercial ISAs.
 Modular: RISC-V has a small standard base ISA, with

multiple standard extensions.
 Stable: Base and first standard extensions are already

frozen. There is no need to worry about major
updates.

 Extensibility: Specific functions can be added based
on extensions. There are many more extensions are
under development.

RISC-V base with standard extensions:
 Four base integer ISAs:

 RV32E, RV32I, RV64I, RV128I
 RV32E is 16-register subset of RV32I.
 Only < 50 hardware instructions needed for base

 Standard extensions:
 M: integer multiply/divide.
 A: Atomic memory operations (AMO + LR/SC)
 F: single-precision floating-point.
 D: double-precision floating-point.
 G = IMAFD, “general purpose” ISA.
 Q: quad-precision floating-point.

B. Dual-core 64-bit RISC-V Architecture

The Dual-core 64-bit RISC-V source code was
configured and generated from Chipyard. Block diagram and
components of the Dual-core 64-bit RISC-V based on Chisel
are configured in Fig. 2. The modules of design Dual Core
RISC-V as below.

 2 rocket cores RV64GC, each core has:
 CPU
 L1 caches
 Page-table walker

 L2 banks:

 Receive memory requests
 Front bus:

 Connects to DMA devices
 Control bus:

 Connects to Core-Complex devices
 Periphery bus:

 Connects to other devices
 System bus:

 Ties everything together (as known as fabric
bus)

Fig. 2. The block diagram of Dual Core RISC-V design.

C. Dual-core 64-bit RISC-V Implementation

C.1. The proposed digital IC design flow with Chisel.
The digital design flow is proposed to generate GDS

using hardware construction language Chisel. The Chisel
code was converted to FIR [7], then from FIR to Verilog,
and from Verilog to GDS. The proposed flow, which shown
in Fig. 3, is described as below.

 Step 1: Clone Chipyard repository with Chisel from
Github.

 Step 2: Checkout all modules of Chipyard on Linux.
 Step 3: Build RISC-V tools-chain from checked

modules.
 Step 4: Build environment, paths, libraries on Linux.
 Step 5: Config DualCoreConfig.fir by Chisel in order

to generate the synthesizable RTL source.
 Step 6: Generate RTL by FIRRTL.
 Step 7: Start to build the physical design flow, prepare

libraries, technology files, design inputs, scripting…
 Step 8: Prepare timing constraint files for Synthesis

step.
 Step 9: Synthesis RTL source code generated from

FIRRTL.
 Step 10: Check Formal Verification.
 Step 11: Create chip level floorplan with taking care

about the base-layer from manufactory.
 Step 12: Arrange modules, macros based on

constraints about area, density and timing.
 Step 13: Place and Route with synthesized netlist and

synthesized timing constraints generated from
Synthesis.

 Step 14: Check Formal Verification.
 Step 15: Extract RC delay and perform PrimeTime

ECO DMSA loops.
 Step 16: Check LVS, DRC, metal, antenna, boundary,

bump, ERC.
 Step 17: Check EMIR static, signal EM.
 Step 18: Check Sign-off.
 Step 19: Tape-out.

Fig. 3. The proposed ASIC design flow from RTL to GDS with Chipyard

using HCL Chisel.

C.2. Function Verification
In order to verify the functional design throughout the

design flow and make sure that design changes such as tools
error, human error, mapping, optimization, and ECO changes
do not affect the functionality of the RTL source code, we
used Formal Verification (as known as Logic Equivalent
Check) as a method that replaced the traditional simulation
without using input vectors so that it is more efficient. The
flow of LEC process is shown in Fig. 4. The steps of LEC
check are described as below:
 Step 1: Read all design files, library elements, netlist,

RTL for both golden design and revised design.
 Step 2; Mapping, LEC will process design into many

small parts called design cones and starting mapping
them between golden design and revised design.

 Step 3: Compare, LEC will compare functional
equivalence between the logical design cones.

 Step 4: Debug, after comparing, LEC will generate
reports to debug and resolve the LEC problems that can
happen.

Fig. 4. The flow of Logic Equivalent Checking process.

C.3. Design techniques of Dual-core 64-bit RISC-V

With the generator tool of Chisel, we can generate many
different configurations for a SoC. These configurations are
specified by the parameters of Chisel, they can be changed
depend on designer purposes.

class DualCoreConfig extends Config(
new WithTop ++
new WithGPIO ++
new WithBootROM ++
new WithJtagDTM ++
new

freechips.rocketchip.subsystem.WithInclusiveC
ache ++

new boom.common.WithRenumberHarts ++
new

freechips.rocketchip.subsystem.WithNBigCores(
2) ++

new freechips.rocketchip.system.BaseConfig)

Timing constraints and timing analysis of the Dual-core

64-bit RISC-V are important parts beside physical
verification and formal verification. Generally, a design is
checked for functionalities by verification methods and is
made sure that it will behave correctly after manufacturing
by timing analysis.

STA (Static Timing Analysis) as well as Logic
Equivalence Checking (LEC) are performed in many steps in
the digital design flow, after synthesis, placement, clock tree
and routing. Constraints contain period, frequency, net skew,
maximum delay between endpoint or maximum net delay.

Below are some initial timing constraints of the design
Dual-core 64-bit RISC-V with 2ns clock period.

Clock definition
create_clock -name main_clk -period 2 -

waveform { 0.000 1 } [get_ports {
clock}]

Clock transition
set_max_transition 0.2 -clock_path

[get_clocks {main_clk}];
set_max_transition 0.4 -data_path

[get_clocks {main_clk}];
set_clock_transition 0.03 [get_clocks

{main_clk}]
set input/output delay
set_input_delay -max -add_delay 0.6 -clock

[get_clocks main_clk] [
get_ports -quiet * -filter "direction ==

in"]
set_input_delay -min -add_delay 0 -clock

[get_clocks main_clk] [get_ports
-quiet * -filter "direction == in"]
set_output_delay -max -add_delay 0.6 -clock

[get_clocks main_clk] [
get_ports -quiet * -filter "direction ==

out"]
set_output_delay -min -add_delay 0 -clock

[get_clocks main_clk] [get_ports
-quiet * -filter "direction == out"]
set drive cell and load capacitance
set_load 0.01 [all_outputs]
set_driving_cell -no_design_rule -lib_cell

$LIB(driving_gate) -pin X
main_clk
set clock group
set_clock_groups -asynchronous -name

MAIN_CLK -group [get_clocks main_clk]
set clock uncertainty.
set_clock_uncertainty -setup 0.105

[get_clocks *]

With the above constraints, the Dual-core 64-bit RISC-V

was performed at clock speed 500MHz, max clock transition
is limited at 200ps for clock paths and 400ps for data paths.
Besides, the clock transitions on all flipflops of main_clk
limited at only 30ps. The clock uncertainty was set to make
sure the clock correlation within the allowed margin when
fabrication, by 105ps@500MHz. The timing optimization
should be done at every steps of the design flow:

 Applying path delay adjustment to force the
synthesis and push more effort on optimizing the
timing.
path_adjust -delay -100 -from
tile/dcache -to tile/dcache -setup

 Floorplan size multiples of manufacturing grid
(0.064 um) and technology cell height (0.024 um).

 Placement techniques: timing driven high effort,
reclaim area while optimizing preCTS, early
estimate trial route based on routing tracks for better
correlation delay at CTS/route.

 CTS techniques: apply advanced route types for
top/trunk/leaf clock nets and multi-cut via, apply
shielding for clock nets to improve SI and crosstalk.

 Optimize power consumption at routing steps for
dynamic power and leakage power.
setOptMode –powerEffort high -
leakageToDynamicRatio 0.0.

IV. EXPERIMENT RESULTS

The proposed ASIC design flow from Chisel to GDSII
applied to Dual-core 64-bit RISC-V were successfully
implemented on 7nm FinFET process. The layout view of
the design is shown in Fig. 5. The final design Dual-core 64-
bit RISC-V with bump connectivity is shown in Fig. 7. The
design was implemented and optimized as flatten design
style. The physical issue and inter-connection timing of
whole chip was taken care better than hierarchical style.

Fig. 5. Layout view of Dual-core 64-bit RISC-V with all routings and PG.

Fig. 6. Design Dual core RISC-V with full bump and connectivity bumps.

The overall results of Dual-core 64-bit RISC-V is shown
in Table I:

TABLE I. SUMMARY OF DUAL-CORE 64-BIT RISC-V ON ASIC

Specifications Value
Frequency 500 MHz

Area 1,384,255m2
Size 1.17  1.17 mm

Power 493,7mW (@500MHz)
Process FinFET 7nm

DRC, ERC,
bump, boundary

Clean

LVS Passed
EMIR, EM Clean

Fig. 7. Summary of total dissipation power.

The total dissipation switching power before CTS was

low, because of the clock elements, which consumed the
most power in design, was not built. Based on Fig. 7, the
switching power at synthesis and placement was 0 and 83
mW, and at CTS and Route was increased by 240 mW and
234 mW respectively.

Timing sign-off will be verified by PrimeTime for most
of scenarios, the scenarios are based on conditions,
temperature, voltage threshold and process for each corner of
wafer while fabrication and real-time usage by end-users.
Below are the most dominant scenarios.
func2C_setup1_ssgnp_0p675v_m40c__cworst-

t_m40c
func2C_setup2_ssgnp_0p675v_m40c__rcworst-

t_m40c
func2C_hold1_ffgnp_0p825v_m40c__cbest_m40c
func2C_hold6_ffgnp_0p825v_m40c__rcworst_m40c

The timing result of PrimeTime is shown as the Table II.
After post ECO PrimeTime, the setup timing is clean, the
hold timing is violated 7 paths with worst slack is -13ps, total
slack is -35ps.

TABLE II. THE RESULTS OF POST-LAYOUT TIMING QUALITY BY

PRIMETIME.

Mode Setup (ns) Hold (ns)
WNS (reg2reg) 0 -0.0135
TNS (reg2reg) 0 -0.0348
NUM (reg2reg) 0 7

Transition 0 -0.007
Capacitance 0 0

Noise 0 0

V. CONCLUSION

The design Dual-core 64-bit RISC-V was successfully
generated based on ISA GV64GC RISC-V. The Dual-core
64-bit RISC-V core was implemented on TSMC 7nm
FinFET process using the proposed ASIC design flow with
hardware construction language Chisel. The clock frequency
is 500MHz. The die-dimension of the design is 1.17 mm 
1.17 mm, die area is around 1.38 mm2. The core may
consume 493.7 mW dissipation power at 500MHz.

The final GDS file was designed by using Genus and
Innovus tools. The physical verification and timing
verification are clean. The layout results are verified and
guaranteed by Formal Verification LEC, PrimeTime, Calibre
and Redhawk. Therefore, the GDS layout file meets all
requirements for successful tape-out.

REFERENCES

[1] Q. Xie, X. Lin, Y. Wang, S. Chen, “Performance Comparisons
between 7nm FinFET and Conventional Bulk CMOS Standard Cell
Libraries,” IEEE Transactions on Circuits and Systems II: Express
Briefs, Vol. 62, Iss. 8, pp. 761 - 765, 2015.

[2] Liberty Library Modeling, Synopsys Inc., [online]
http://www.synopsys.com/community/interoperability/pages/libertylib
model.aspx.

[3] Q. Xie, Y. Wang, S. Chen, and M. Pedram. “Variation-aware joint
optimization of supply voltage and sleep transistor size for 10nm
FinFET technology,” in ICCD, Oct. 2014.

[4] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanovi, “Chisel: Constructing hardware in a
scala embedded language,” in Proc. 49th Annu. Design Autom. Conf.,
pp. 1212–1221, Jun. 2012.

[5] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanoviä, “The RISC-V
instruction set manual, volume I: User-level ISA, version 2.0,” EECS
Dept., Univ. California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-
2014-54, May 2014.

[6] RISC-V Foundation. (2019). Rocket Chip Generator. [Online].
Available: https://github.com/chipsalliance/rocket-chip

[7] P. S. Li, A. M. Izraelevitz, and J. Bachrach, “Specification for the
FIRRTL Language,” EECS Dept., Univ. California, Berkeley, CA,
USA, Tech. Rep. UCB/EECS-2016-9, Feb. 2016.

